Citation: |
Moyu Chen, Fanqiang Chen, Bin Cheng, Shi Jun Liang, Feng Miao. Moiré heterostructures: highly tunable platforms for quantum simulation and future computing[J]. Journal of Semiconductors, 2023, 44(1): 010301. doi: 10.1088/1674-4926/44/1/010301
****
M Y Chen, F Q Chen, B Cheng, S J Liang, F Miao. Moiré heterostructures: highly tunable platforms for quantum simulation and future computing[J]. J. Semicond, 2023, 44(1): 010301. doi: 10.1088/1674-4926/44/1/010301
|
Moiré heterostructures: highly tunable platforms for quantum simulation and future computing
DOI: 10.1088/1674-4926/44/1/010301
More Information
-
References
[1] Cao Y, Fatemi V, Demir A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 2018, 556(7699), 80 doi: 10.1038/nature26154[2] Lu X, Stepanov P, Yang W, et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature, 2019, 574(7780), 653 doi: 10.1038/s41586-019-1695-0[3] Cao Y, Fatemi V, Fang S, et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018, 556(7699), 43 doi: 10.1038/nature26160[4] Oh M, Nuckolls K P, Wong D, et al. Evidence for unconventional superconductivity in twisted bilayer graphene. Nature, 2021, 600(7888), 240 doi: 10.1038/s41586-021-04121-x[5] Cao Y, Rodan-Legrain D, Rubies-Bigorda O, et al. Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene. Nature, 2020, 583(7815), 215 doi: 10.1038/s41586-020-2260-6[6] Chen G, Sharpe A L, Fox E J, et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature, 2020, 579(7797), 56 doi: 10.1038/s41586-020-2049-7[7] Liu X, Hao Z, Khalaf E, et al. Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature, 2020, 583(7815), 221 doi: 10.1038/s41586-020-2458-7[8] Polshyn H, Zhu J, Kumar M A, et al. Electrical switching of magnetic order in an orbital Chern insulator. Nature, 2020, 588(7836), 66 doi: 10.1038/s41586-020-2963-8[9] Chen G, Jiang L, Wu S, et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nature Phys, 2019, 15(3), 237 doi: 10.1038/s41567-018-0387-2[10] Chen S, He M, Zhang Y H, et al. Electrically tunable correlated and topological states in twisted monolayer–bilayer graphene. Nature Phys, 2021, 17(3), 374 doi: 10.1038/s41567-020-01062-6[11] Shen C, Chu Y, Wu Q, et al. Correlated states in twisted double bilayer graphene. Nature Phys, 2020, 16(5), 520 doi: 10.1038/s41567-020-0825-9[12] Xu S, Al Ezzi M M, Balakrishnan N, et al. Tunable van Hove singularities and correlated states in twisted monolayer–bilayer graphene. Nature Phys, 2021, 17(5), 619 doi: 10.1038/s41567-021-01172-9[13] Regan E C, Wang D, Jin C, et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature, 2020, 579(7799), 359 doi: 10.1038/s41586-020-2092-4[14] Shimazaki Y, Schwartz I, Watanabe K, et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature, 2020, 580(7804), 472 doi: 10.1038/s41586-020-2191-2[15] Tang Y, Li L, Li T, et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature, 2020, 579(7799), 353 doi: 10.1038/s41586-020-2085-3[16] Wang L, Shih E M, Ghiotto A, et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nature Mater, 2020, 19(8), 861 doi: 10.1038/s41563-020-0708-6[17] Xu Y, Liu S, Rhodes D A, et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature, 2020, 587(7833), 214 doi: 10.1038/s41586-020-2868-6[18] Ghiotto A, Shih E M, Pereira G S S G, et al. Quantum criticality in twisted transition metal dichalcogenides. Nature, 2021, 597(7876), 345 doi: 10.1038/s41586-021-03815-6[19] Li H, Li S, Regan E C, et al. Imaging two-dimensional generalized Wigner crystals. Nature, 2021, 597(7878), 650 doi: 10.1038/s41586-021-03874-9[20] Li T, Jiang S, Li L, et al. Continuous Mott transition in semiconductor moiré superlattices. Nature, 2021, 597(7876), 350 doi: 10.1038/s41586-021-03853-0[21] Li T, Jiang S, Shen B, et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature, 2021, 600(7890), 641 doi: 10.1038/s41586-021-04171-1[22] Gu J, Ma L, Liu S, et al. Dipolar excitonic insulator in a moiré lattice. Nature Phys, 2022, 18(4), 395 doi: 10.1038/s41567-022-01532-z[23] Zhang Z, Regan E C, Wang D, et al. Correlated interlayer exciton insulator in heterostructures of monolayer WSe2 and moiré WS2/WSe2. Nature Phys, 2022, 18(10), 1214 doi: 10.1038/s41567-022-01702-z[24] Li Q, Cheng B, Chen M, et al. Tunable quantum criticalities in an isospin extended Hubbard model simulator. Nature, 2022, 609(7927), 479 doi: 10.1038/s41586-022-05106-0[25] Wu S, Zhang Z, Watanabe K, et al. Chern insulators, van Hove singularities and topological flat bands in magic-angle twisted bilayer graphene. Nature Mater, 2021, 20(4), 488 doi: 10.1038/s41563-020-00911-2[26] Saito Y, Ge J, Rademaker L, et al. Hofstadter subband ferromagnetism and symmetry-broken Chern insulators in twisted bilayer graphene. Nature Phys, 2021, 17(4), 478 doi: 10.1038/s41567-020-01129-4[27] Serlin M, Tschirhart CL, Polshyn H, et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science, 2020, 367(6480), 900 doi: 10.1126/science.aay5533[28] Sharpe A L, Fox E J, Barnard AW, et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science, 2019, 365(6453), 605 doi: 10.1126/science.aaw3780[29] Vizner Stern M, Waschitz Y, Cao W, et al. Interfacial ferroelectricity by van der Waals sliding. Science, 2021, 372(6549), 1462 doi: 10.1126/science.abe8177[30] Yasuda K, Wang X, Watanabe K, et al. Stacking-engineered ferroelectricity in bilayer boron nitride. Science, 2021, 372(6549), 1458 doi: 10.1126/science.abd3230[31] Wang X, Yasuda K, Zhang Y, et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nature Nanotechnol, 2022, 17(4), 367 doi: 10.1038/s41565-021-01059-z[32] Weston A, Castanon E G, Enaldiev V, et al. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nature Nanotechnol, 2022, 17(4), 390 doi: 10.1038/s41565-022-01072-w[33] Klein D R, Xia L Q, MacNeill D, et al. Electrical switching of a moiré ferroelectric superconductor. arXiv: 2205.04458, 2022 doi: 10.48550/arXiv.2205.04458[34] Niu R, Li Z, Han X, et al. Giant ferroelectric polarization in a bilayer graphene heterostructure. Nature Commun, 2022, 13(1), 6241 doi: 10.1038/s41467-022-34104-z[35] Zheng Z, Ma Q, Bi Z, et al. Unconventional ferroelectricity in moiré heterostructures. Nature, 2020, 588(7836), 71 doi: 10.1038/s41586-020-2970-9[36] Park J M, Cao Y, Watanabe K, et al. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature, 2021, 590(7845), 249 doi: 10.1038/s41586-021-03192-0[37] Hao Z, Zimmerman A M, Ledwith P, et al. Electric field–tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science, 2021, 371(6534), 1133 doi: 10.1126/science.abg0399[38] Berdyugin A I, Xin N, Gao H, et al. Out-of-equilibrium criticalities in graphene superlattices. Science, 2022, 375(6579), 430 doi: 10.1126/science.abi8627[39] Tian H, Che S, Xu T, et al. Evidence for flat band dirac superconductor originating from quantum geometry. arXiv: 2112.13401, 2021 doi: 10.48550/arXiv.2112.13401[40] Cao Y, Rodan-Legrain D, Park J M, et al. Nematicity and competing orders in superconducting magic-angle graphene. Science, 2021, 372(6539), 264 doi: 10.1126/science.abc2836[41] Kennes D M, Claassen M, Xian L, et al. Moiré heterostructures as a condensed-matter quantum simulator. Nature Phys, 2021, 17(2), 155 doi: 10.1038/s41567-020-01154-3[42] Xu Y, Kang K, Watanabe K, et al. A tunable bilayer Hubbard model in twisted WSe2. Nature Nanotechnol, 2022, 17(9), 934 doi: 10.1038/s41565-022-01180-7[43] Zhao W, Shen B, Tao Z, et al. Gate-tunable heavy fermions in a moiré Kondo lattice. arXiv: 2211.00263, 2022 doi: 10.48550/arXiv.2211.00263[44] Wang C, Gao Y, Lv H, et al. Stacking domain wall magnons in twisted van der Waals magnets. Phys Rev Lett, 2020, 125(24), 247201 doi: 10.1103/PhysRevLett.125.247201[45] Hejazi K, Luo Z X, Balents L. Noncollinear phases in moiré magnets. Proceedings of the National Academy of Sciences, 2020, 117(20), 10721 doi: 10.1073/pnas.2000347117[46] Li Y, Zhang S, Chen F, et al. Observation of coexisting dirac bands and moiré flat bands in magic‐angle twisted trilayer graphene. Adv Mater, 2022, 34(42), 2205996 doi: 10.1002/adma.202205996[47] Bravyi S B, Kitaev A Y. Fermionic quantum computation. Annals of Physics, 2002, 298(1), 210 doi: 10.1006/aphy.2002.6254[48] Ma C, Yuan S, Cheung P, et al. Intelligent infrared sensing enabled by tunable moiré quantum geometry. Nature, 2022, 604(7905), 266 doi: 10.1038/s41586-022-04548-w[49] Mak K F, Xiao D, Shan J. Light–valley interactions in 2D semiconductors. Nature Photonics, 2018, 12(8), 451 doi: 10.1038/s41566-018-0204-6 -
Proportional views