Citation: |
Liyuan Cheng, Hezhi Zhang, Wenhui Zhang, Hongwei Liang. Investigation of β-Ga2O3 thick films grown on c-plane sapphire via carbothermal reduction[J]. Journal of Semiconductors, 2023, 44(6): 062804. doi: 10.1088/1674-4926/44/6/062804
****
Liyuan Cheng, Hezhi Zhang, Wenhui Zhang, Hongwei Liang. 2023: Investigation of β-Ga2O3 thick films grown on c-plane sapphire via carbothermal reduction. Journal of Semiconductors, 44(6): 062804. doi: 10.1088/1674-4926/44/6/062804
|
Investigation of β-Ga2O3 thick films grown on c-plane sapphire via carbothermal reduction
DOI: 10.1088/1674-4926/44/6/062804
More Information
-
Abstract
We investigated the influence of the growth temperature, O2 flow, molar ratio between Ga2O3 powder and graphite powder on the structure and morphology of the films grown on the c-plane sapphire (0001) substrates by a carbothermal reduction method. Experimental results for the heteroepitaxial growth of β-Ga2O3 illustrate that β-Ga2O3 growth by the carbothermal reduction method can be controlled. The optimal result was obtained at a growth temperature of 1050 °C. The fastest growth rate of β-Ga2O3 films was produced when the O2 flow was 20 sccm. To guarantee that β-Ga2O3 films with both high-quality crystal and morphology properties, the ideal molar ratio between graphite powder and Ga2O3 powder should be set at 10 : 1. -
References
[1] Bauman D A, Panov D I, Zakgeim D A, et al. High-quality bulk β-Ga2O3 and β-(AlxGa1–x)2O3 crystals: Growth and properties. Phys Status Solidi A, 2021, 218, 20 doi: 10.1002/pssa.202100335[2] Goyal A, Yadav B S, Thakur O P, et al. Effect of annealing on β-Ga2O3 film grown by pulsed laser deposition technique. J Alloys Compd, 2014, 583, 214 doi: 10.1016/j.jallcom.2013.08.115[3] Sasaki K, Higashiwaki M, Kuramata A, et al. Growth temperature dependences of structural and electrical properties of Ga2O3 epitaxial films grown on β-Ga2O3 (010) substrates by molecular beam epitaxy. Cryst Growth, 2014, 392, 30 doi: 10.1016/j.jcrysgro.2014.02.002[4] Zhang T, Hu Z G, Li Y F, et al. Investigation on the β-Ga2O3 deposited on off-angled sapphire (0001) substrates. J Lumin, 2021, 233, 117928 doi: 10.1016/j.jlumin.2021.117928[5] Kang H C. Heteroepitaxial growth of multidomain Ga2O3/sapphire (001) thin films deposited using radio frequency magnetron sputtering. Mater Lett, 2014, 119, 123 doi: 10.1016/j.matlet.2014.01.030[6] Kamimura T, Sasaki K, Kuramata A, et al. Band alignment and electrical properties of Al2O3 β-Ga2O3 heterojunctions. Appl Phys Lett, 2014, 104, 192104 doi: 10.1063/1.4876920[7] Guo Q X, Hu C Y, Saito K, et al. Growth properties of gallium oxide on sapphire substrate by plasma-assisted pulsed laser depositio. J Semicond, 2019, 40(12), 122801 doi: 10.1088/1674-4926/40/12/122801[8] Oshima T, Okuno T, Fujita S, et al. Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors. Jpn J Appl Phys, 2007, 46, 7217 doi: 10.1143/JJAP.46.7217[9] Sasaki K, Kuramata A, Masui T et al. Device-quality β-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy. Appl Phys Express, 2012, 5, 035502 doi: 10.1143/APEX.5.035502[10] Higashiwaki M, Sasaki K, Kuramata A, et al. Gallium oxide metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl Phys Lett, 2012, 100, 013504 doi: 10.1063/1.3674287[11] Zhang Y B, Zheng J, Ma P P, et al. Growth and characterization of β-Ga2O3 thin films grown on off-angled Al2O3 substrates by metal-organic chemical vapor deposition. J Semicond, 2022, 43(9), 092801 doi: 10.1088/1674-4926/43/9/092801[12] Seiler W, Selmane M, Abdelouhadi K, et al. Epitaxial growth of gallium oxide films on c-cut sapphire substrate. Thin Solid Films, 2015, 589, 556 doi: 10.1016/j.tsf.2015.06.034[13] Tak B R, Kumar S, Kapoor A K, et al. Recent advances in the growth of gallium oxide thin films employing various growth techniques-a review. J Phys D, 2021, 54, 453002 doi: 10.1088/1361-6463/ac1af2[14] Hoffmann G, Budde M, Mazzolini P, et al. Efficient suboxide sources in oxide molecular beam epitaxy using mixed metal + oxide charges: The examples of SnO and Ga2O. APL Mater, 2020, 8, 031110 doi: 10.1063/1.5134444[15] Sheoran H, Fang S, Liang F Z, et al. High performance of zero-power-consumption MOCVD-grown β-Ga2O3-based solar-blind photodetectors with ultralow dark current and high-temperature functionalities. Appl Mater Inter, 2022, 14, 52096 doi: 10.1021/acsami.2c08511[16] Qin Y, Li L H, Zhao X L, et al. Metal−semiconductor−metal ε-Ga2O3 solar-blind photodetectors with a record-high responsivity rejection ratio and their gain mechanism. ACS Photonics, 2020, 7, 812 doi: 10.1021/acsphotonics.9b01727[17] Sun H D, Li K H, Castanedo Torres C G, et al. HCl flow-induced phase change of α-, β-, and ε-Ga2O3 films grown by MOCVD. Cryst Growth Des, 2018, 18, 2370 doi: 10.1021/acs.cgd.7b01791[18] Zhuo Y, Chen Z M, Tu W B, et al. β-Ga2O3 versus ε-Ga2O3: Control of the crystal phase composition of gallium oxide thin film prepared by metal-organic chemical vapor deposition. Appl Surf Sci, 2017, 420, 802 doi: 10.1016/j.apsusc.2017.05.241[19] Yao Y, Okur S, Lyle L A M, et al. Growth and characterization of α-, β-, and ε-phases of Ga2O3 using MOCVD and HVPE techniques. Mater Res Lett, 2018, 6, 268 doi: 10.1080/21663831.2018.1443978[20] Bosi M, Mazzolini P, Seravalli L, et al. Ga2O3 polymorphs: tailoring the epitaxial growth conditions. J Mater Chem C, 2020, 8, 10975 doi: 10.1039/D0TC02743J[21] Lee S D, Kaneko K, Fujita S. Homoepitaxial growth of beta gallium oxide films by mist chemical vapor deposition. Jpn J Appl Phys, 2016, 55, 1202B8 doi: 10.7567/JJAP.55.1202B8[22] Nomura K, Goto K, Togashi R, et al. Thermodynamic study of β-Ga2O3 growth by halide vapor phase epitaxy. J Cryst Growth, 2014, 405, 19 doi: 10.1016/j.jcrysgro.2014.06.051[23] Lee J, Kim H, Gautam L, et al. High thermal stability of β-Ga2O3 grown by MOCVD. Crystals, 2021, 11, 446 doi: 10.3390/cryst11040446[24] Zhang W H, Zhang H Z, Liang H W, et al. Heteroepitaxial β-Ga2O3 thick films on sapphire substrate by carbothermal reduction rapid growth method. Semicond Sci Technol, 2022, 37, 085014 doi: 10.1088/1361-6641/ac79c7[25] Qi Q, Chen H F, Hong Z F, et al. Preparation and characteristics of ultra-wide Ga2O3 nanoribbons up to millimeter-long level without catalyst. Acta Physica Sinica, 2020, 69(16), 168101 doi: 10.7498/aps.69.20200481[26] Fukushima J, Takizawa H. Size control of Ti4O7 nanoparticles by carbothermal reduction using a multimode microwave furnace. Crystals, 2018, 8, 444 doi: 10.3390/cryst8120444[27] Maeng S H, Lee H, Park M S, et al. Ultrafast carbothermal reduction of silica to silicon using a CO2 laser beam. Sci Rep, 2020, 10, 21730 doi: 10.1038/s41598-020-78562-1[28] Mazzolini P, Falkenstein A, Wouters C, et al. Offcut-related step-flow and growth rate enhancement during (100) β-Ga2O3 homoepitaxy by metal-exchange catalyzed molecular beam epitaxy. APL Mater, 2020, 8, 011107 doi: 10.1063/1.5135772[29] Vogt P, Bierwagen O. Reaction kinetics and growth window for plasma-assisted molecular beam epitaxy of Ga2O3: Incorporation of Ga vs. Ga2O desorption. Appl Phys Lett, 2016, 108, 072101 doi: 10.1063/1.4942002[30] Vogt P, Bierwagen O. Comparison of the growth kinetics of In2O3 and Ga2O3 and their suboxide desorption during plasma-assisted molecular beam epitaxy. Appl Phys Lett, 2016, 109, 062103 doi: 10.1063/1.4960633[31] Hu D Q, Zhuang S W, Ma Z Z, et al. Study on the optical properties of β-Ga2O3 films grown by MOCVD. J Mater Sci, 2017, 28, 10997 doi: 10.1007/s10854-017-6882-x[32] An Y X, Dai L Y, Wu Y, et al. Epitaxial growth of β-Ga2O3 thin films on Ga2O3 and Al2O3 substrates by using pulsed laser deposition. JAD, 2019, 9, 1950032 doi: 10.1142/S2010135X19500322[33] Blumenschein N, Paskova T, Muth J F. Effect of growth pressure on PLD-deposited gallium oxide thin films for deep-UV photodetectors. Phys Status Solidi A, 2019, 216, 1900098 doi: 10.1002/pssa.201900098[34] Alhalaili B, Mao H, Dryden D M, et al. Influence of silver as a catalyst on the growth of β-Ga2O3 nanowires on GaAs. Materials, 2020, 13, 5377 doi: 10.3390/ma13235377[35] Feng B Y, Li Z C, Cheng F Y, et al. Investigation of β-Ga2O3 film growth mechanism on c-plane sapphire substrate by ozone molecular beam epitaxy. Phys Status Solidi A, 2021, 218, 2000457 doi: 10.1002/pssa.202000457[36] Sun H D, Castanedo Torres C G, Liu K K, et al. Valence and conduction band offsets of β-Ga2O3/AlN heterojunction. Appl Phys Lett, 2017, 111, 162105 doi: 10.1063/1.5003930[37] Nakagomi S, Kokubun Y. Crystal orientation of β-Ga2O3 thin films formed on c-plane and a-plane sapphire substrate. J Cryst Growth, 2012, 349, 12 doi: 10.1016/j.jcrysgro.2012.04.006[38] Guo D Y, Wu Z P, Li P G, et al. Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology. Opt Mater Express, 2014, 4, 1067 doi: 10.1364/OME.4.001067 -
Proportional views