Citation: |
Amgad A. Al-Saman, Eugeny A. Ryndin, Xinchuan Zhang, Yi Pei, Fujiang Lin. Analytical model of non-uniform charge distribution within the gated region of GaN HEMTs[J]. Journal of Semiconductors, 2023, 44(8): 082802. doi: 10.1088/1674-4926/44/8/082802
****
Amgad A. Al-Saman, Eugeny A. Ryndin, Xinchuan Zhang, Yi Pei, Fujiang Lin, Analytical model of non-uniform charge distribution within the gated region of GaN HEMTs[J]. Journal of Semiconductors, 2023, 44(8), 082802 doi: 10.1088/1674-4926/44/8/082802
|
Analytical model of non-uniform charge distribution within the gated region of GaN HEMTs
DOI: 10.1088/1674-4926/44/8/082802
More Information
-
Abstract
A physics-based analytical expression that predicts the charge, electrical field and potential distributions along the gated region of the GaN HEMT channel has been developed. Unlike the gradual channel approximation (GCA), the proposed model considers the non-uniform variation of the concentration under the gated region as a function of terminal applied voltages. In addition, the model can capture the influence of mobility and channel temperature on the charge distribution trend. The comparison with the hydrodynamic (HD) numerical simulation showed a high agreement of the proposed model with numerical data for different bias conditions considering the self-heating and quantization of the electron concentration. The analytical nature of the model allows us to reduce the computational and time cost of the simulation. Also, it can be used as a core expression to develop a complete physics-based transistor Ⅳ model without GCA limitation. -
References
[1] Al-Saman A A, Pei Y, Ryndin E A, et al. Accurate temperature estimation for each gate of GaN HEMT with n-gate fingers. IEEE Trans Electron Devices, 2020, 67, 3577 doi: 10.1109/TED.2020.3012116[2] Hoo Teo K, Zhang Y H, Chowdhury N, et al. Emerging GaN technologies for power, RF, digital, and quantum computing applications: Recent advances and prospects. J Appl Phys, 2021, 130, 160902 doi: 10.1063/5.0061555[3] Meneghini M, De Santi C, Abid I, et al. GaN-based power devices: Physics, reliability, and perspectives. J Appl Phys, 2021, 130, 181101 doi: 10.1063/5.0061354[4] Zhu G Q, Chang C, Xu Y H, et al. A small-signal model extraction and optimization method for AlGaN/GaN HEMT up to 110 GHz. 2019 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), 2020, 111 doi: 10.1109/ICTA48799.2019.9012880[5] Zhu G Q, Chang C, Xu Y H, et al. A millimeter-wave scalable small-signal modeling approach based on FW-EM for AlGaN/GaN HEMT up to 110 GHz. Microw Opt Technol Lett, 2021, 63, 2145 doi: 10.1002/mop.32404[6] Al-Saman A A, Ryndin E A, Pei Y, et al. An estimation of 2DEG density for GaN HEMT using analytical equation considering the charge conservation low. Solid State Electron, 2022, 188, 108209 doi: 10.1016/j.sse.2021.108209[7] Anbuselvan N, Amudhalakshmi P, Mohankumar N. Analytical modeling of 2DEG and 2DHG charge balancing in quaternary Al0.42In0.03Ga0.55N/Al0.3In0.7NAl0.42In0.03Ga0.55N/Al0.3In0.7N HEMTs. J Comput Electron, 2018, 17, 1191 doi: 10.1007/s10825-018-1164-2[8] Jena K, Swain R, Lenka T R. Physics-based mathematical model of 2DEG sheet charge density and DC characteristics of AlInN/AlN/GaN MOSHEMT. Int J Numer Model Electron Netw Devices Fields, 2017, 30, e2117 doi: 10.1002/jnm.2117[9] Khandelwal S, Chauhan Y S, Fjeldly T A. Analytical modeling of surface-potential and intrinsic charges in AlGaN/GaN HEMT devices. IEEE Trans Electron Devices, 2012, 59, 2856 doi: 10.1109/TED.2012.2209654[10] Khandelwal S, Goyal N, Fjeldly T A. A physics-based analytical model for 2DEG charge density in AlGaN/GaN HEMT devices. IEEE Trans Electron Devices, 2011, 58, 3622 doi: 10.1109/TED.2011.2161314[11] Ashok A, Vasileska D, Hartin O L, et al. Electrothermal Monte Carlo simulation of GaN HEMTs including electron–electron interactions. IEEE Trans Electron Devices, 2010, 57, 562 doi: 10.1109/TED.2009.2038585[12] Si J, Wei J, Chen W J, et al. Electric field distribution around drain-side gate edge in AlGaN/GaN HEMTs: Analytical approach. IEEE Trans Electron Devices, 2013, 60, 3223 doi: 10.1109/TED.2013.2272055[13] Sadi T, Kelsall R W, Pilgrim N J. Investigation of self-heating effects in submicrometer GaN/AlGaN HEMTs using an electrothermal Monte Carlo method. IEEE Trans Electron Devices, 2006, 53, 2892 doi: 10.1109/TED.2006.885099[14] Yamakawa S, Goodnick S, Aboud S, et al. Quantum corrected full-band cellular Monte Carlo simulation of AlGaN/GaN HEMTs. J Comput Electron, 2004, 3, 299 doi: 10.1007/s10825-004-7065-6[15] Minetto A, Deutschmann B, Modolo N, et al. Hot-electron effects in AlGaN/GaN HEMTs under semi-ON DC stress. IEEE Trans Electron Devices, 2020, 67, 4602 doi: 10.1109/TED.2020.3025983[16] Ryndin E A, Al-Saman A. A novel approach to model high-speed microelectronic switch on the basis of hydrodynamic approximation. International Conference on Micro- and Nano-Electronics 2018, 2019, 128 doi: 10.1117/12.2521711[17] Wang X D, Hu W D, Chen X S, et al. The study of self-heating and hot-electron effects for AlGaN/GaN double-channel HEMTs. IEEE Trans Electron Devices, 2012, 59, 1393 doi: 10.1109/TED.2012.2188634[18] Asgari A, Kalafi M, Faraone L. A quasi-two-dimensional charge transport model of AlGaN/GaN high electron mobility transistors (HEMTs). Phys E, 2005, 28, 491 doi: 10.1016/j.physe.2005.05.054[19] Khandelwal S, Chauhan Y S, Fjeldly T A, et al. ASM GaN: Industry standard model for GaN RF and power devices—Part 1: DC, CV, and RF model. IEEE Trans Electron Devices, 2019, 66, 80 doi: 10.1109/TED.2018.2867874[20] Ali Albahrani S, Mahajan D, Hodges J, et al. ASM GaN: Industry standard model for GaN RF and power devices—Part-II: Modeling of charge trapping. IEEE Trans Electron Devices, 2019, 66, 87 doi: 10.1109/TED.2018.2868261[21] Radhakrishna U, Choi P, Grajal J, et al. Study of RF-circuit linearity performance of GaN HEMT technology using the MVSG compact device model. 2016 IEEE International Electron Devices Meeting (IEDM), 2017, 3.7.1 doi: doi.org/10.1117/12.2521711[22] Radhakrishna U, Imada T, Palacios T, et al. MIT virtual source GaNFET-high voltage (MVSG-HV) model: A physics based compact model for HV-GaN HEMTs. Phys Status Solidi C, 2014, 11, 848 doi: 10.1002/pssc.201300392[23] Khandelwal S, Yigletu F M, Iñiguez B, et al. A charge-based capacitance model for AlGaAs/GaAs HEMTs. Solid State Electron, 2013, 82, 38 doi: 10.1016/j.sse.2013.01.017[24] Palankovski V, Quay R. Analysis and Simulation of Heterostructure Devices. Vienna: Springer Vienna, 2004 -
Proportional views