Citation: |
Fei Sun, Yi Peng, Guoqiang Zhao, Xiancheng Wang, Zheng Deng, Changqing Jin. Anomalous bond lengthening in compressed magnetic doped semiconductor Ba(Zn0.95Mn0.05)2As2[J]. Journal of Semiconductors, 2024, 45(4): 042101. doi: 10.1088/1674-4926/45/4/042101
****
Fei Sun, Yi Peng, Guoqiang Zhao, Xiancheng Wang, Zheng Deng, Changqing Jin, Anomalous bond lengthening in compressed magnetic doped semiconductor Ba(Zn0.95Mn0.05)2As2[J]. Journal of Semiconductors, 2024, 45(4), 042101 doi: 10.1088/1674-4926/45/4/042101
|
Anomalous bond lengthening in compressed magnetic doped semiconductor Ba(Zn0.95Mn0.05)2As2
DOI: 10.1088/1674-4926/45/4/042101
More Information
-
Abstract
Applying pressure has been evidenced as an effective method to control the properties of semiconductors, owing to its capability to modify the band configuration around Fermi energy. Correspondingly, structural evolutions under external pressures are required to analyze the mechanisms. Herein high-pressure structure of a magnetic doped semiconductor Ba(Zn0.95Mn0.05)2As2 is studied with combination of in-situ synchrotron X-ray diffractions and diamond anvil cells. The materials become ferromagnetic with Curie temperature of 105 K after further 20% K doping. The title material undergoes an isostructural phase transition at around 19 GPa. Below the transition pressure, it is remarkable to find lengthening of Zn/Mn−As bond within Zn/MnAs layers, since chemical bonds are generally shortened with applying pressures. Accompanied with the bond stretch, interlayer As−As distances become shorter and the As−As dimers form after the phase transition. With further compression, Zn/Mn−As bond becomes shortened due to the recovery of isotropic compression on the Zn/MnAs layers. -
References
[1] Dietl T, Ohno H, Matsukura F, et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 2000, 287, 1019 doi: 10.1126/science.287.5455.1019[2] Furdyna J K. Diluted magnetic semiconductors. J Appl Phys, 1988, 64, R29 doi: 10.1063/1.341700[3] Dietl T, Ohno H. Dilute ferromagnetic semiconductors: Physics and spintronic structures. Rev Mod Phys, 2014, 86, 187 doi: 10.1103/RevModPhys.86.187[4] Hirohata A, Sukegawa H, Yanagihara H, et al. Roadmap for emerging materials for spintronic device applications. IEEE Trans Magn, 2015, 51, 0800511 doi: 10.1109/TMAG.2015.2457393[5] Zhang J, Wei Z M. Preface to special topic on twisted van der waals heterostructures. J Semicond, 2023, 44, 010101 doi: 10.1088/1674-4926/44/1/010101[6] Wei D H. The room temperature ferromagnetism in highly strained two-dimensional magnetic semiconductors. J Semicond, 2023, 44, 040401 doi: 10.1088/1674-4926/44/4/040401[7] Chen L, Yang X, Yang F H, et al. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga, Mn)As to 200 K via nanostructure engineering. Nano Lett, 2011, 11, 2584 doi: 10.1021/nl201187m[8] Wei Q Q, Wang H L, Zhao X P, et al. Electron mobility anisotropy in (Al, Ga)Sb/InAs two-dimensional electron gases epitaxied on GaAs (001) substrates. J Semicond, 2022, 43, 072101 doi: 10.1088/1674-4926/43/7/072101[9] Deng Z, Wang X, Wang M Q, et al. Giant exchange-bias-like effect at low cooling fields induced by pinned magnetic domains in Y2NiIrO6 double perovskite. Adv Mater, 2023, 35, 2209759 doi: 10.1002/adma.202209759[10] Minomura S, Drickamer H G. Pressure induced phase transitions in silicon, germanium and some III-V compounds. J Phys Chem Solids, 1962, 23, 451 doi: 10.1016/0022-3697(62)90085-9[11] Ono S, Kikegawa T. Phase transformation of GaAs at high pressures and temperatures. J Phys Chem Solids, 2018, 113, 1 doi: 10.1016/j.jpcs.2017.10.005[12] Grivickas P, McCluskey M D, Gupta Y M. Transformation of GaAs into an indirect L-band-gap semiconductor under uniaxial strain. Phys Rev B, 2009, 80, 073201 doi: 10.1103/PhysRevB.80.073201[13] Lin K L, Lin C M, Lin Y S, et al. Structural properties of pressure-induced structural phase transition of Si-doped GaAs by angular-dispersive X-ray diffraction. Appl Phys A, 2016, 122, doi: 10.1007/s00339-016-9660-3[14] Csontos M, Mihaly G, Janko B, et al. Pressure-induced ferromagnetism in (In, Mn)Sb dilute magnetic semiconductor. Nature Mater, 2005, 4, 447 doi: 10.1038/nmat1388[15] Gryglas-Borysiewicz M, Kwiatkowski A, Baj M, et al. Hydrostatic pressure study of the paramagnetic-ferromagnetic phase transition in (Ga, Mn)As. Phys Rev B, 2010, 82, 153204 doi: 10.1103/PhysRevB.82.153204[16] Gonzalez Szwacki N, Majewski J A, Dietl T. (Ga, Mn)As under pressure: A first-principles investigation. Phys Rev B, 2015, 91, 184409 doi: 10.1103/PhysRevB.91.184409[17] Sun F, Li N N, Chen B J, et al. Pressure effect on the magnetism of the diluted magnetic semiconductor (Ba1-xKx)(Zn1-yMny)2As2 with independent spin and charge doping. Phys Rev B, 2016, 93, 224403 doi: 10.1103/PhysRevB.93.224403[18] Sun F, Zhao G Q, Escanhoela C A, et al. Hole doping and pressure effects on the II-II-V-based diluted magnetic semiconductor (Ba1-xKx)(Zn1-yMny)2As2. Phys Rev B, 2017, 95, 094412 doi: 10.1103/PhysRevB.95.094412[19] Deng Z, Jin C Q, Liu Q Q, et al. Li(Zn, Mn)As as a new generation ferromagnet based on a I-II-V semiconductor. Nat Commun, 2011, 2, 422 doi: 10.1038/ncomms1425[20] Zhao K, Deng Z, Wang X C, et al. New diluted ferromagnetic semiconductor with Curie temperature up to 180 K and isostructural to the '122' iron-based superconductors. Nat Commun, 2013, 4, 1442 doi: 10.1038/ncomms2447[21] Zhao K, Chen B J, Zhao G Q, et al. Ferromagnetism at 230 K in (Ba0.7K0.3)(Zn0.85Mn0.15)2As2 diluted magnetic semiconductor. Chin Sci Bull, 2014, 59, 2524 doi: 10.1007/s11434-014-0398-z[22] Yu S, Zhao G Q, Peng Y, et al. A substantial increase of Curie temperature in a new type of diluted magnetic semiconductors via effects of chemical pressure. APL Mater, 2019, 7, 101119 doi: 10.1063/1.5120719[23] Deng Z, Kang C J, Croft M, et al. A pressure-induced inverse order-disorder transition in double perovskites. Angew Chem Int Ed, 2020, 59, 8240 doi: 10.1002/anie.202001922[24] Yu S, Peng Y, Zhao G Q, et al. Colossal negative magnetoresistance in spin glass Na(Zn, Mn)Sb. J Semicond, 2023, 44, 032501 doi: 10.1088/1674-4926/44/3/032501[25] Zhao X Q, Dong J O, Fu L C, et al. (Ba1−xNax)F(Zn1−xMnx)Sb: A novel fluoride-antimonide magnetic semiconductor with decoupled charge and spin doping. J Semicond, 2022, 43, 112501 doi: 10.1088/1674-4926/43/11/112501[26] Liu X Y, Riney L, Guerra J, et al. Colossal negative magnetoresistance from hopping in insulating ferromagnetic semiconductors. J Semicond, 2022, 43, 112502 doi: 10.1088/1674-4926/43/11/112502[27] Toby B H. EXPGUI, A graphical user interface for GSAS. J Appl Cryst, 2001, 34, 210 doi: 10.1107/S0021889801002242[28] Jia S, Jiramongkolchai P, Suchomel M R, et al. Ferromagnetic quantum critical point induced by dimer-breaking in SrCo2(Ge1−xPx)2. Nature Physics, 2011, 7, 207 doi: 10.1038/nphys1868[29] Xiao Z W, Hiramatsu H, Ueda S, et al. Narrow bandgap in β-BaZn2As2 and its chemical origins. J Am Chem Soc, 2014, 136, 14959 doi: 10.1021/ja507890u[30] Suzuki H, Zhao K, Shibata G, et al. Photoemission and X-ray absorption studies of the isostructural to Fe-based superconductors diluted magnetic semiconductor Ba1-xKx(Zn1-yMny)2As2. Phys Rev B, 2015, 91, 140401(R doi: 10.1103/PhysRevB.91.140401 -
Proportional views