J. Semicond. > Volume 39 > Issue 10 > Article Number: 104003

Modeling of tunneling current density of GeC based double barrier multiple quantum well resonant tunneling diode

Swagata Dey 1, , , Vedatrayee Chakraborty 2, , Bratati Mukhopadhyay 1, and Gopa Sen 1,

+ Author Affilications + Find other works by these authors

PDF

Turn off MathJax

Abstract: The double barrier quantum well (DBQW) resonant tunneling diode (RTD) structure made of SiGeSn/GeC/SiGeSn alloys grown on Ge substrate is analyzed. The tensile strained Ge1−zCz on Si1−xyGexSny heterostructure provides a direct band gap type I configuration. The transmission coefficient and tunneling current density have been calculated considering single and multiple quantum wells. A comparative study of tunnelling current of the proposed structure is done with the existing RTD structure based on GeSn/SiGeSn DBH. A higher value of the current density for the proposed structure has been obtained.

Key words: DBQWMQWRTDNDRtunneling current density

Abstract: The double barrier quantum well (DBQW) resonant tunneling diode (RTD) structure made of SiGeSn/GeC/SiGeSn alloys grown on Ge substrate is analyzed. The tensile strained Ge1−zCz on Si1−xyGexSny heterostructure provides a direct band gap type I configuration. The transmission coefficient and tunneling current density have been calculated considering single and multiple quantum wells. A comparative study of tunnelling current of the proposed structure is done with the existing RTD structure based on GeSn/SiGeSn DBH. A higher value of the current density for the proposed structure has been obtained.

Key words: DBQWMQWRTDNDRtunneling current density



References:

[1]

Deen M J, Basu P K. Silicon photonics: fundamentals and Devices. Chichester U K John Wiley, 2012.

[2]

Pavesi L, Lockwood D J. Silicon photonics. New York: Springer, 2004

[3]

Bauer M , Taraci J, Tolle J, et al. Ge–Sn semiconductors for band-gap and lattice engineering. Appl Phys Lett, 2002, 81: 2992

[4]

Lee J W, Reed M A. Molecular beam epitaxial growth of AlGaAs/InGaAs resonant tunneling structures. J Vac Sci Technol B, 1987, 5(3): 771

[5]

Ghosh S, Basu P K. The calculated composition of Ge1−zCz/Ge1−xzSixSny heterostructure grown on Si for direct gap emission from Ge1−zCz at 1.55 μm. Solid State Commun, 2010, 150: 844

[6]

Menendez J, Kouvetakis J. Type-I Ge/GeSiSn strained layer heterostructures with a direct Ge band gap. Appl Phys Lett, 2004, 85: 1175

[7]

Chakraborty V, Mukhopadhyay B. Group IV heterojunction laser structure based on S–Ge–Sn–C around 1550 nm: determination of gain coefficient. Proceedings in International Conference in Computers andDevices for Communication, 2015

[8]

Sun G, Soref R A, Cheng H H. Design of an electrically pumped SiGeSn/GeSn/SiGeSn double heterostructure mid infra red laser. J Appl Phys, 2010, 108: 033107

[9]

Chang S W, Chuang S L. Theory of optical gain of Ge-SixGeySn1−xy quantum-well lasers. IEEE J Quantum Electron, 2007, 43(3): 249

[10]

Zhu Y H, Xu Q, Fan W J, et al. Theoretical gain of strained GeSn/Ge1−xySixSny quantum well laser. J Appl Phys, 2010, 107: 073108

[11]

Chang G E, Chang S W, Chuang S L. Strain-balanced GezSn1−z–SixGeySn1−xy multiple quantum-well lasers. IEEE J Quantum Electron, 2010, 46(12): 1813

[12]

Basu R, Chakraborty V, Mukhopadhyay B, et al. Predicted performance of Ge/GeSn hetero-photo transistors on Si substrate at 1.55 μm. Opt Quant Electron, 2013, 47(2): 387

[13]

Moontragoon P, Vukmirovi'C N, Ikoni'C Z, et al. SnGe asymmetric quantum well electro absorption modulators for long-wave silicon photonics. IEEE J Sel Top Quantum Electron, 2010, 16(1): 100

[14]

Dey S, Mukhopadhyay B, Basu P K. Modeling of responsivity of GeSn/SiGeSn QWIP. Proceedings in International Conference in Computers andDevices for Communication, 2015

[15]

Esaki L, Tsu R. Superlattics and negative differential conductivity in semiconductors. IBM J Res Develop, 1970, 14: 61

[16]

Tsu R, Esaki L. Tunneling in a finite superlattice. Appl Phys Lett, 1973, 22: 562

[17]

Chang L L, Esaki L, Tsu R. Resonant tunnelling in semiconductor double barriers. Appl Phys Lett, 1974, 24: 593

[18]

Wu K Y, Tsai B H, Chen J Z, et al. Sn-based group-IV structure for resonant tunneling diodes. IEEE Electron Device Lett, 2013, 34(8): 951

[19]

Mukherjee K, Das N R. Tunneling current calculations for nonuniform and asymmetric multiple quantum well structures. J Appl Phys, 2011, 109: 053708

[20]

Handbook of mathematical functions. Edited by Abramowitz M A and Stegun I A. Dover, New York, 1965

[1]

Deen M J, Basu P K. Silicon photonics: fundamentals and Devices. Chichester U K John Wiley, 2012.

[2]

Pavesi L, Lockwood D J. Silicon photonics. New York: Springer, 2004

[3]

Bauer M , Taraci J, Tolle J, et al. Ge–Sn semiconductors for band-gap and lattice engineering. Appl Phys Lett, 2002, 81: 2992

[4]

Lee J W, Reed M A. Molecular beam epitaxial growth of AlGaAs/InGaAs resonant tunneling structures. J Vac Sci Technol B, 1987, 5(3): 771

[5]

Ghosh S, Basu P K. The calculated composition of Ge1−zCz/Ge1−xzSixSny heterostructure grown on Si for direct gap emission from Ge1−zCz at 1.55 μm. Solid State Commun, 2010, 150: 844

[6]

Menendez J, Kouvetakis J. Type-I Ge/GeSiSn strained layer heterostructures with a direct Ge band gap. Appl Phys Lett, 2004, 85: 1175

[7]

Chakraborty V, Mukhopadhyay B. Group IV heterojunction laser structure based on S–Ge–Sn–C around 1550 nm: determination of gain coefficient. Proceedings in International Conference in Computers andDevices for Communication, 2015

[8]

Sun G, Soref R A, Cheng H H. Design of an electrically pumped SiGeSn/GeSn/SiGeSn double heterostructure mid infra red laser. J Appl Phys, 2010, 108: 033107

[9]

Chang S W, Chuang S L. Theory of optical gain of Ge-SixGeySn1−xy quantum-well lasers. IEEE J Quantum Electron, 2007, 43(3): 249

[10]

Zhu Y H, Xu Q, Fan W J, et al. Theoretical gain of strained GeSn/Ge1−xySixSny quantum well laser. J Appl Phys, 2010, 107: 073108

[11]

Chang G E, Chang S W, Chuang S L. Strain-balanced GezSn1−z–SixGeySn1−xy multiple quantum-well lasers. IEEE J Quantum Electron, 2010, 46(12): 1813

[12]

Basu R, Chakraborty V, Mukhopadhyay B, et al. Predicted performance of Ge/GeSn hetero-photo transistors on Si substrate at 1.55 μm. Opt Quant Electron, 2013, 47(2): 387

[13]

Moontragoon P, Vukmirovi'C N, Ikoni'C Z, et al. SnGe asymmetric quantum well electro absorption modulators for long-wave silicon photonics. IEEE J Sel Top Quantum Electron, 2010, 16(1): 100

[14]

Dey S, Mukhopadhyay B, Basu P K. Modeling of responsivity of GeSn/SiGeSn QWIP. Proceedings in International Conference in Computers andDevices for Communication, 2015

[15]

Esaki L, Tsu R. Superlattics and negative differential conductivity in semiconductors. IBM J Res Develop, 1970, 14: 61

[16]

Tsu R, Esaki L. Tunneling in a finite superlattice. Appl Phys Lett, 1973, 22: 562

[17]

Chang L L, Esaki L, Tsu R. Resonant tunnelling in semiconductor double barriers. Appl Phys Lett, 1974, 24: 593

[18]

Wu K Y, Tsai B H, Chen J Z, et al. Sn-based group-IV structure for resonant tunneling diodes. IEEE Electron Device Lett, 2013, 34(8): 951

[19]

Mukherjee K, Das N R. Tunneling current calculations for nonuniform and asymmetric multiple quantum well structures. J Appl Phys, 2011, 109: 053708

[20]

Handbook of mathematical functions. Edited by Abramowitz M A and Stegun I A. Dover, New York, 1965

[1]

Tong Zhaomin, Xue Chenyang, Lin Yijie, Chen Shang. Mechanic-Electric Coupling Characteristics of a Resonant Tunneling Diode. J. Semicond., 2008, 29(10): 1907.

[2]

Haipeng Zhang, Qiang Zhang, Mi Lin, Weifeng Lü, Zhonghai Zhang, Jianling Bai, Jian He, Bin Wang, Dejun Wang. A GaN/InGaN/AlGaN MQW RTD for versatile MVL applications with improved logic stability. J. Semicond., 2018, 39(7): 074004. doi: 10.1088/1674-4926/39/7/074004

[3]

Liang Huilai, Guo Weilian, Song Ruiliang, Qi Haitao, Zhang Shilin, Hu Liuchang, Li Jianheng, Mao Luhong, Shang Yuehui, Feng Zhen, Tian Guoping, Li Yali. Design and Fabrication of Resonant Tunneling Transistor with RTD/HEMT in Series Structure. J. Semicond., 2007, 28(10): 1594.

[4]

Yu Linwei, Chen Kunji, Song Jie, Wang Jiumin, Wang Xiang, Li Wei, Huang Xinfan. Room Temperature Resonant Tunneling and Negative DifferentialResistance Effects in a Self-Assembed Si Quantum Dot Array. J. Semicond., 2006, 27(S1): 15.

[5]

Guo Weilian, Liang Huilai, Zhang Shilin, Hu Liuchang, Mao Luhong, Song Ruiliang, Niu Pingjuan, Wang Wei, Shang Yuehui, Wang Guoquan, Feng Zhen. Design and Fabrication of a Planar RTD and Its MOBILE. J. Semicond., 2006, 27(12): 2167.

[6]

Zhu Hua, Li Cuiyun, Mo Chunlan, Jiang Fengyi, Zhang Meng. TEM Characterization of Defects in GaN/InGaN Multi-Quantum Wells Grown on Silicon by MOCVD. J. Semicond., 2008, 29(3): 539.

[7]

Han Chunlin, Chen Chen, Zou Penghui, Zhang Yang, Zeng Yiping, Xue Fangshi, Gao Jianfeng, Zhang Zheng, Geng Tao. InP-base resonant tunneling diodes. J. Semicond., 2009, 30(6): 064001. doi: 10.1088/1674-4926/30/6/064001

[8]

Du Rui, Dai Yang, Yang Fuhua. Design of a Frequency Divider with Reduced Complexity Based on a Resonant Tunneling Diode. J. Semicond., 2008, 29(7): 1292.

[9]

Dai Yang, Huang Yinglong, Liu Wei, Ma Long, Yang Fuhua, Wang Liangchen, Zeng Yiping, Zheng Houzhi. A Monolithic Integrated Logic Circuit of Resonant Tunneling Diodes and a HEMT. J. Semicond., 2007, 28(3): 332.

[10]

Subhra Chowdhury, Swarnabha Chattaraj, Dhrubes Biswas. Design and simulation of a novel GaN based resonant tunneling high electron mobility transistor on a silicon substrate. J. Semicond., 2015, 36(4): 044001. doi: 10.1088/1674-4926/36/4/044001

[11]

Chen Wensuo, Xie Gang, Zhang Bo, Li Zehong, Li Zhaoji. Novel lateral IGBT with n-region controlled anode on SOI substrate. J. Semicond., 2009, 30(11): 114005. doi: 10.1088/1674-4926/30/11/114005

[12]

Huali Xi, Lirong Huang, Guiying Jiang. The effects of current density ratio and reflectivity on the gain, saturation and noise characteristics of a two-section MQW RSOA. J. Semicond., 2013, 34(5): 054004. doi: 10.1088/1674-4926/34/5/054004

[13]

Zhiqiang Li, Hailin Tang, Haitao Liu, Yi Liang, Qian Li, Ning An, Jianping Zeng, Wenjie Wang, Yongzhong Xiong. Improving the peak current density of resonant tunneling diode based on InP substrate. J. Semicond., 2017, 38(6): 064005. doi: 10.1088/1674-4926/38/6/064005

[14]

Wang Wei, Niu Pingjuan, Guo Weilian, Yu Xin, Zhang Shilin. A Novel Oscillator Based on RTD/MOSFET. J. Semicond., 2007, 28(2): 289.

[15]

Hu Yanlong, Liang Huilai, Li Yihuan, Zhang Shilin, Mao Luhong, Guo Weilian. Monolithically Fabricated OEICs Using RTD and MSM. J. Semicond., 2006, 27(4): 641.

[16]

Qi Haitao, Feng Zhen, Li Yali, Zhang Xiongwen, Shang Yaohui, Guo Weilian. Fabrication of a High-Performance RTD on InP Substrate. J. Semicond., 2007, 28(12): 1945.

[17]

Tong Zhaomin, Xue Chenyang, Zhang Binzhen, Liu Jun, Qiao Hui. RTD’s Relaxation Oscillation Characteristics with Applied Pressure. J. Semicond., 2008, 29(1): 39.

[18]

Wang Wei, Huang Beiju, Dong Zan, Guo Weilian, Chen Hongda. A flexible logic circuit based on a MOS-NDR transistor in standard CMOS technology. J. Semicond., 2010, 31(5): 055007. doi: 10.1088/1674-4926/31/5/055007

[19]

Wang Xiaohua, Zhan Wang, Liu Guojun. Growth and Optical Characteristics of 408nm InGaN/GaN MQW LED. J. Semicond., 2007, 28(1): 104.

[20]

, , , , , . RTD与PHEMT集成的几个关键工艺. J. Semicond., 2005, 26(2): 390.

Search

Advanced Search >>

GET CITATION

S Dey, V Chakraborty, B Mukhopadhyay, G Sen, Modeling of tunneling current density of GeC based double barrier multiple quantum well resonant tunneling diode[J]. J. Semicond., 2018, 39(10): 104003. doi: 10.1088/1674-4926/39/10/104003.

Export: BibTex EndNote

Article Metrics

Article views: 1197 Times PDF downloads: 67 Times Cited by: 0 Times

History

Manuscript received: 06 February 2018 Manuscript revised: 07 March 2018 Online: Accepted Manuscript: 26 April 2018 Uncorrected proof: 06 September 2018 Published: 09 October 2018

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误