1. | Jiang, W., Zhu, Y., Liu, J. et al. Improving the Stability of Wide Bandgap Perovskites: Mechanisms, Strategies, and Applications in Tandem Solar Cells. Advanced Materials, 2025, 37(21): 2418500. doi:10.1002/adma.202418500 | |
2. | Wu, C., Wang, C., Chen, F. et al. Polyamino acid-mediated crystallization and crystal stabilization in perovskite for efficient and stable photovoltaic devices. Journal of Semiconductors, 2025, 46(5): 052804. doi:10.1088/1674-4926/25030040 | |
3. | Yan, C., Liu, P., Bai, G. et al. Influence of surface groups on SnO2 nanoparticles in enhancing perovskite photodetector performance. Organic Electronics, 2025. doi:10.1016/j.orgel.2024.107194 | |
4. | Wang, P., Pei, Z., Dai, Q. et al. High performance ultraviolet photodetector based on lead-free bismuth perovskite heterojunction. Bulletin of Materials Science, 2025, 48(1): 3. doi:10.1007/s12034-024-03338-6 | |
5. | Geng, Z., Chen, S., Shang, C. et al. Pressure-induced structural and electronic properties of inorganic halide perovskite CsPbBr3. Journal of Solid State Chemistry, 2025. doi:10.1016/j.jssc.2024.125111 | |
6. | Wang, C.-F., Yang, Y., Hu, Y. et al. Exploring Aqueous Solution-Processed Pseudohalide Rare-Earth Double Perovskite Ferroelectrics toward X-Ray Detection with High Sensitivity. Angewandte Chemie International Edition, 2024, 63(49): e202413726. doi:10.1002/anie.202413726 | |
7. | Nur-E-Alam, M., Islam, M.A., Kar, Y.B. et al. Anti-solvent materials enhanced structural and optical properties on ambiently fabricated perovskite thin films. Scientific Reports, 2024, 14(1): 19995. doi:10.1038/s41598-024-70344-3 | |
8. | Basit Shakir, M., Murtaza, G., Ayyaz, A. et al. Computational insight on K2AuBiX6 (X = F, Cl, Br, I) double perovskites to comprehensively investigate mechanical, optoelectronic, and thermoelectric features for green energy applications. Materials Science and Engineering B, 2024. doi:10.1016/j.mseb.2024.117667 | |
9. | Qiu, M., Yang, X.-L., Zhao, Z.-X. et al. Water-induced formation of Cs2AgBiBr6/BiOBr heterostructure with enhanced visible-light photocatalytic activity. Advanced Powder Technology, 2024, 35(11): 104679. doi:10.1016/j.apt.2024.104679 | |
10. | Devi, M., Kumar, M., Singh, D.V. Impact on green energy conversion and stability of PSC device with the insertion of bifunctional molecule as an interfacial layer. Journal of Physics and Chemistry of Solids, 2024. doi:10.1016/j.jpcs.2024.112247 | |
11. | Ding, Y., Feng, E., Lu, S. et al. Stress regulation via surface micro-etching and reconstruction for enhancing triple-cation perovskite solar cells with an efficiency of 25.54%. Energy and Environmental Science, 2024, 17(23): 9268-9277. doi:10.1039/d4ee04248d | |
12. | Zhang, M., Yao, N., Lin, Y. et al. Interfacial electronic and defect engineering coupling of S-scheme CsSnBr3/SnSx (x = 1, 2) heterostructures with carrier dynamics for solar cells. Journal of Materials Chemistry A, 2024, 12(42): 28771-28785. doi:10.1039/d4ta05528d | |
13. | Beygisangchin, M., Kamarudin, S.K., Umar, A.A. et al. Advancements in configuration structures and fabrication techniques for achieving stability in perovskite solar cells: a comprehensive review. Journal of the Korean Ceramic Society, 2024, 61(5): 755-782. doi:10.1007/s43207-024-00401-0 | |
14. | Kavadiya, S., Strzalka, J., Sharma, G. et al. Formation and degradation mechanism of methylammonium lead iodide perovskite thin film fabricated by electrospray technique. Solar Energy Materials and Solar Cells, 2024. doi:10.1016/j.solmat.2024.112956 | |
15. | Sahoo, G.S., Bhattarai, S., Feddi, E. et al. Unveiling the potential of lead-free Cs2AgBiBr6 (CABB) perovskite for solar cell application. Solar Energy Materials and Solar Cells, 2024. doi:10.1016/j.solmat.2024.112873 | |
16. | Ismail, Y.A.M., Abolibda, T.Z., Almohammedi, A. et al. Inherent UV-blocking capability of polyurethane prepared from vegetable oil for solar cell encapsulation. Journal of Materials Science, 2024, 59(15): 6446-6458. doi:10.1007/s10853-024-09558-9 | |
17. | Ismail, Y.A.M., Abolibda, T.Z., Almohammedi, A. et al. Castor oil-based polyurethane for affordable solar cell encapsulation. Surface and Coatings Technology, 2024. doi:10.1016/j.surfcoat.2024.130424 | |
18. | Halder, S., Chowdhury, K., Mandal, R. Large area perovskite thin film fabrication and application and developments. Comprehensive Materials Processing Volume 1 13 Second Edition, 2024. doi:10.1016/B978-0-323-96020-5.00226-0 | |
19. | Wang, S., Chen, C., Zhang, Z. et al. Efficient thermoelectric properties and high UV absorption of stable zinc-doped all-inorganic perovskite for BIPV applications in multiple scenarios. Solar Energy, 2024. doi:10.1016/j.solener.2023.112240 | |
20. | Ashebir, E.K., Abay, B.T., Berhe, T.A. Sustainable A2BIBIIIX6 based lead free perovskite solar cells: The challenges and research roadmap for power conversion efficiency improvement. Aims Materials Science, 2024, 11(4): 712-759. doi:10.3934/MATERSCI.2024036 | |
21. | Kempf, M.A., Moser, P., Tomoscheit, M. et al. Rapid Spin Depolarization in the Layered 2D Ruddlesden-Popper Perovskite (BA)(MA)PbI. ACS Nano, 2023, 17(24): 25459-25467. doi:10.1021/acsnano.3c09001 | |
22. | Zakaria, Y., Aïssa, B., Fix, T. et al. Moderate temperature deposition of RF magnetron sputtered SnO2-based electron transporting layer for triple cation perovskite solar cells. Scientific Reports, 2023, 13(1): 9100. doi:10.1038/s41598-023-35651-1 | |
23. | Mehmood, S., Xia, Y., Qu, F. et al. Investigating the Performance of Efficient and Stable Planer Perovskite Solar Cell with an Effective Inorganic Carrier Transport Layer Using SCAPS-1D Simulation. Energies, 2023, 16(21): 7438. doi:10.3390/en16217438 | |
24. | Kumar, M., Kumar, S. Numerical analysis of emerging concept of perovskite/silicon heterojunction solar cells. Journal of Computational Electronics, 2023, 22(4): 1061-1074. doi:10.1007/s10825-023-02035-7 | |
25. | Wei, J., Wu, J., Wang, Y. et al. The modulation of the electrical and optical properties of Cs2TiBr6 by doping. Materials Advances, 2023, 4(17): 3767-3773. doi:10.1039/d3ma00263b | |
26. | Neelu, N., Pandey, N., Chakrabarti, S. Morphology of highly stable lead-free hybrid organic–inorganic double perovskites (CH3NH3)2XBiCl6 (X = K, Na, Ag) for solar cell applications. Journal of Materials Science, 2023, 58(27): 11139-11158. doi:10.1007/s10853-023-08704-z | |
27. | O’Hara, T., Ravilla, A., McCalmont, E. et al. Novel method of recycling perovskite solar cells using iodide solutions. MRS Advances, 2023, 8(6): 296-301. doi:10.1557/s43580-023-00559-5 | |
28. | Talebi, M., Mokhtari, A., Soleimanian, V. Ab-inito simulation of the structural, electronic and optical properties for the vacancy-ordered double perovskites A2TiI6 (A = Cs or NH4); a time-dependent density functional theory study. Journal of Physics and Chemistry of Solids, 2023. doi:10.1016/j.jpcs.2023.111262 | |
29. | Zhou, L., Wu, Y., Liu, X. et al. Simulation of Boosting Efficiency of GaAs Absorption Layers with KNbO3 Scatterers for Solar Cells. Energies, 2023, 16(7): 3067. doi:10.3390/en16073067 | |
30. | Yan, W., Ma, C., Cai, X. et al. Self-powered and wireless physiological monitoring system with integrated power supply and sensors. Nano Energy, 2023. doi:10.1016/j.nanoen.2023.108203 | |
31. | Gan, Y., Qiu, G., Qin, B. et al. Numerical Analysis of Stable (FAPbI3)0.85(MAPbBr3)0.15-Based Perovskite Solar Cell with TiO2/ZnO Double Electron Layer. Nanomaterials, 2023, 13(8): 1313. doi:10.3390/nano13081313 | |
32. | Zhang, Y., Zhang, G., Zhang, H. et al. Re-emerging photo responsiveness enhancement under compression in (NH4)2SeBr6. Applied Physics Letters, 2023, 122(13): 132101. doi:10.1063/5.0135599 | |
33. | Zhai, M., Chen, C., Cheng, M. Advancing Lead-Free Cs2AgBiBr6 perovskite solar cells: Challenges and strategies. Solar Energy, 2023. doi:10.1016/j.solener.2023.02.027 | |
34. | Darshani, M.P., Shaw, R., Sharma, R. Investigation of the Trail Environment to Enhance the Efficiency of the Solar Cell through Pre-Installation Study. Journal of Scientific and Industrial Research, 2023, 82(3): 307-315. doi:10.56042/jsir.v82i03.61784 | |
35. | Liu, X., Liu, T., Chen, D. et al. Broad-Spectrum Germanium Photodetector Based on the Ytterbium-Doped Perovskite Nanocrystal Downshifting Effect. ACS Applied Optical Materials, 2023, 1(1): 507-512. doi:10.1021/acsaom.2c00139 | |
36. | Yadav, V., Pandey, R. Photovoltaic Behaviour of Cs2BiAgI6 Solar Cells: Investigating Bulk Defect Density via SCAPS-1d Simulations. 2023. doi:10.1109/RMKMATE59243.2023.10369577 | |
37. | Gao, Y., Yang, X., Tan, Z. et al. Effects of beam splitting on photovoltaic properties of monocrystalline silicon, multicrystalline silicon, GaAs, and perovskite solar cells for hybrid utilization. International Journal of Green Energy, 2023, 20(8): 835-843. doi:10.1080/15435075.2022.2119855 | |
38. | Ndlovu, S., Ollengo, M.A., Muchuweni, E. et al. Current advances in perovskite oxides supported on graphene-based materials as interfacial layers of perovskite solar cells. Critical Reviews in Solid State and Materials Sciences, 2023, 48(1): 112-131. doi:10.1080/10408436.2022.2041395 | |
39. | Dong, W., Qiao, W., Xiong, S. et al. Surface Passivation and Energetic Modification Suppress Nonradiative Recombination in Perovskite Solar Cells. Nano Micro Letters, 2022, 14(1): 108. doi:10.1007/s40820-022-00854-0 | |
40. | Shahinuzzaman, M., Afroz, S., Mohafez, H. et al. Roles of Inorganic Oxide Based HTMs towards Highly Efficient and Long-Term Stable PSC—A Review. Nanomaterials, 2022, 12(17): 3003. doi:10.3390/nano12173003 | |
41. | Eze, M.C., Eze, H.U., Ugwuanyi, G.N. et al. Improving the efficiency and stability of in-air fabricated perovskite solar cells using the mixed antisolvent of methyl acetate and chloroform. Organic Electronics, 2022. doi:10.1016/j.orgel.2022.106552 | |
42. | Wu, F., zhao, Y., Yao, L. et al. Manipulating back contact enables over 8%-efficient carbon-based Sb2(S, Se)3 solar cells. Chemical Engineering Journal, 2022. doi:10.1016/j.cej.2022.135872 | |
43. | Zhou, J., Zhong, M. Recent progress of interface engineering for lead halide perovskite solar cells | [铅卤钙钛矿太阳能电池界面工程的近期进展]. Fuhe Cailiao Xuebao Acta Materiae Compositae Sinica, 2022, 39(5): 1937-1955. doi:10.13801/j.cnki.fhclxb.20220303.001 | |
44. | Ming, S., Wang, Z., Wu, L. et al. SnO2 Thin Film Prepared by Atomic Layer Deposition Technology and Its Effect on the Performance of Perovskite Solar Cells | [原子层沉积法制备SnO2薄膜及其对钙钛矿电池性能的影响]. Cailiao Daobao Materials Reports, 2022, 36(7): 20110236. doi:10.11896/cldb.20110236 | |
45. | Zhu, W., Wang, S., Zhang, X. et al. Ion Migration in Organic–Inorganic Hybrid Perovskite Solar Cells: Current Understanding and Perspectives. Small, 2022, 18(15): 2105783. doi:10.1002/smll.202105783 | |
46. | Príncipe, J., Duarte, V.C.M., Andrade, L. Inverted Perovskite Solar Cells: The Emergence of a Highly Stable and Efficient Architecture. Energy Technology, 2022, 10(4): 2100952. doi:10.1002/ente.202100952 | |
47. | Wu, D., Huo, B., Huang, Y. et al. Synthesis of Stable Lead-Free Cs3Sb2(BrxI1−x)9 (0 ≤ x ≤ 1) Perovskite Nanoplatelets and Their Application in CO2 Photocatalytic Reduction. Small, 2022, 18(12): 2106001. doi:10.1002/smll.202106001 | |
48. | Heydari, Z., Madani, M., Majidian-Taleghani, N. et al. A comparative study of mixed halide perovskite thin film preparation by three- and two-step electrodeposition techniques. Optical Materials, 2022. doi:10.1016/j.optmat.2021.111909 | |
49. | Wang, Y.-Y., Zhang, Y.-Z., Wei, J.-W. et al. First Principles Calculation on Photoelectric Properties of Cs2TiBr6 by Substitution Doping with Cl and Pd. Chinese Journal of Inorganic Chemistry, 2022, 38(5): 884-890. doi:10.11862/CJIC.2022.102 | |
50. | Zhang, F., Berry, J.J., Zhu, K. 1.18 - The Promise of Perovskite Solar Cells. Comprehensive Renewable Energy Second Edition Volume 1 9, 2022. doi:10.1016/B978-0-12-819727-1.00150-3 | |
51. | Appadurai, T., Kashikar, R., Sikarwar, P. et al. Manipulation of parity and polarization through structural distortion in light-emitting halide double perovskites. Communications Materials, 2021, 2(1): 68. doi:10.1038/s43246-021-00172-9 | |
52. | Elsmani, M.I., Fatima, N., Jallorina, M.P.A. et al. Recent issues and configuration factors in perovskite-silicon tandem solar cells towards large scaling production. Nanomaterials, 2021, 11(12): 3186. doi:10.3390/nano11123186 | |
53. | Ka, I., Asuo, I.M., Nechache, R. et al. Highly stable air processed perovskite solar cells by interfacial layer engineering. Chemical Engineering Journal, 2021. doi:10.1016/j.cej.2021.130334 | |
54. | Liu, T., Liu, X., Chen, D. et al. Drop-casting CsPbBr3perovskite quantum dots as down-shifting layer enhancing the ultraviolet response of silicon avalanche photodiode. Applied Physics Letters, 2021, 119(15): 153501. doi:10.1063/5.0067710 | |
55. | Zhao, X., Tang, T., Xie, Q. et al. First-principles study on the electronic and optical properties of the orthorhombic CsPbBr3and CsPbI3withCmcmspace group. New Journal of Chemistry, 2021, 45(35): 15857-15862. doi:10.1039/d1nj02216d | |
56. | Wu, P., Wang, S., Li, X. et al. Advances in SnO2-based perovskite solar cells: From preparation to photovoltaic applications. Journal of Materials Chemistry A, 2021, 9(35): 19554-19588. doi:10.1039/d1ta04130d | |
57. | Gaddam, S.K., Pothu, R., Boddula, R. Advanced polymer encapsulates for photovoltaic devices − A review. Journal of Materiomics, 2021, 7(5): 920-928. doi:10.1016/j.jmat.2021.04.004 | |
58. | Hu, Y., Li, L., Xu, C. et al. Study of high metal doped SnO2 for photovoltaic devices. Materials Today Communications, 2021. doi:10.1016/j.mtcomm.2021.102148 | |
59. | Zhao, X., Tang, R., Zhang, L. et al. Efficient coaxial n-i-p heterojunction Sb2S3 solar cells. Journal of Physics D Applied Physics, 2021, 54(13): 134001. doi:10.1088/1361-6463/abd3cc | |
60. | Aftab, A., Ahmad, M.I. A review of stability and progress in tin halide perovskite solar cell. Solar Energy, 2021. doi:10.1016/j.solener.2020.12.065 | |
61. | Liu, Z., Yang, H., Wang, J. et al. Synthesis of lead-free Cs2AgBix6 (X = Cl, Br, I) double perovskite nanoplatelets and their application in CO2 photocatalytic reduction. Nano Letters, 2021, 21(4): 1620-1627. doi:10.1021/acs.nanolett.0c04148 | |
62. | Ankaiah, B., Hampannavar, S. Perovskite Solar Cells with Electron and Hole Transport Absorber Layers of High-Power Conversion Efficiency by Numerical Simulations Design using SCAPS. 2021. doi:10.1109/ICMNWC52512.2021.9688534 | |
63. | De, S., Acharya, S., Sahoo, S. et al. 2D Materials for Solar Cell Applications. Materials for Solar Energy Conversion Materials Methods and Applications, 2021. doi:10.1002/9781119752202.ch9 | |
64. | Mujahid, M., Chen, C., Zhang, J. et al. Recent advances in semitransparent perovskite solar cells. Infomat, 2021, 3(1): 101-124. doi:10.1002/inf2.12154 | |
65. | Lefler, B.M., May, S.J., Fafarman, A.T. Role of fluoride and fluorocarbons in enhanced stability and performance of halide perovskites for photovoltaics. Physical Review Materials, 2020, 4(12): 120301. doi:10.1103/PhysRevMaterials.4.120301 | |
66. | Ma, Y., Yin, Y., Li, G. et al. Aqueous solution processed MoS3as an eco-friendly hole-transport layer for all-inorganic Sb2Se3solar cells. Chemical Communications, 2020, 56(96): 15173-15176. doi:10.1039/d0cc05997h | |
67. | Yao, P.-P., Wang, L.-R., Wang, J.-X. et al. Evolutions of structural and optical properties of lead-free double perovskite Cs2TeCl6 under high pressure | [高压下非铅双钙钛矿Cs2TeCl6的结构和光学性质]. Wuli Xuebao Acta Physica Sinica, 2020, 69(21): 218801. doi:10.7498/aps.69.20200988 | |
68. | Hailegnaw, B., Sariciftci, N.S., Scharber, M.C. Impedance Spectroscopy of Perovskite Solar Cells: Studying the Dynamics of Charge Carriers Before and After Continuous Operation. Physica Status Solidi A Applications and Materials Science, 2020, 217(22): 2000291. doi:10.1002/pssa.202000291 | |
69. | Gordillo, G., Torres, O.G., Abella, M.C. et al. Improving the stability of MAPbI3films by using a new synthesis route. Journal of Materials Research and Technology, 2020, 9(6): 13759-13769. doi:10.1016/j.jmrt.2020.09.095 | |
70. | Kothandaraman, R.K., Jiang, Y., Feurer, T. et al. Near-Infrared-Transparent Perovskite Solar Cells and Perovskite-Based Tandem Photovoltaics. Small Methods, 2020, 4(10): 2000395. doi:10.1002/smtd.202000395 | |
71. | Sun, Q., Yin, W.-J., Wei, S.-H. Searching for stable perovskite solar cell materials using materials genome techniques and high-throughput calculations. Journal of Materials Chemistry C, 2020, 8(35): 12012-12035. doi:10.1039/d0tc02231d | |
72. | Tang, R., Wang, X., Lian, W. et al. Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency. Nature Energy, 2020, 5(8): 587-595. doi:10.1038/s41560-020-0652-3 | |
73. | Ajayan, J., Nirmal, D., Mohankumar, P. et al. A review of photovoltaic performance of organic/inorganic solar cells for future renewable and sustainable energy technologies. Superlattices and Microstructures, 2020. doi:10.1016/j.spmi.2020.106549 | |
74. | Chang, S.H., Tseng, P.-C., Chiang, S.-E. et al. Structural, optical and excitonic properties of MAxCs1-xPb(IxBr1-x)3 alloy thin films and their application in solar cells. Solar Energy Materials and Solar Cells, 2020. doi:10.1016/j.solmat.2020.110478 | |
75. | Chen, L.-C., Tien, C.-H., Jhou, Y.-C. et al. Co-solvent controllable engineering of Ma0.5Fa0.5Pb0.8Sn0.2I3 lead–tin mixed perovskites for inverted perovskite solar cells with improved stability. Energies, 2020, 13(10): 2438. doi:10.3390/en13102438 | |
76. | Wang, L., Yao, P., Wang, F. et al. Pressure-Induced Structural Evolution and Bandgap Optimization of Lead-Free Halide Double Perovskite (NH4)2SeBr6. Advanced Science, 2020, 7(6): 1902900. doi:10.1002/advs.201902900 | |
77. | Zhang, F., Zhu, K. Perovskite solar cells. Advanced Characterization of Thin Film Solar Cells, 2020.  | |
78. | Xu, Q., Stroppa, A., Lv, J. et al. Impact of organic molecule rotation on the optoelectronic properties of hybrid halide perovskites. Physical Review Materials, 2019, 3(12): 125401. doi:10.1103/PhysRevMaterials.3.125401 | |
79. | Polosan, S., Ciobotaru, C.C., Ciobotaru, I.C. Charge Transfer from Alq3-5Cl to Graphene Oxide in Donor–Acceptor Heterostructures. Journal of Electronic Materials, 2019, 48(11): 7184-7191. doi:10.1007/s11664-019-07531-w | |
80. | Hu, Q., Rezaee, E., Dong, L. et al. Molecularly Designed Zinc (II) Phthalocyanine Derivative as Dopant-Free Hole-Transporting Material of Planar Perovskite Solar Cell with Preferential Face-on Orientation. Solar Rrl, 2019, 3(11): 1900182. doi:10.1002/solr.201900182 | |
81. | Castro-Méndez, A.-F., Hidalgo, J., Correa-Baena, J.-P. The Role of Grain Boundaries in Perovskite Solar Cells. Advanced Energy Materials, 2019, 9(38): 1901489. doi:10.1002/aenm.201901489 | |
82. | Dong, L., Hu, Q., Rezaee, E. et al. Dopant-Free Hole-Transporting Layer Based on Isomer-Pure Tetra-Butyl-Substituted Zinc(II) Phthalocyanine for Planar Perovskite Solar Cells. Solar Rrl, 2019, 3(9): 1900119. doi:10.1002/solr.201900119 | |
83. | Lee, H.-J., Cho, S.-P., Na, S.-I. et al. Thin metal top electrode and interface engineering for efficient and air-stable semitransparent perovskite solar cells. Journal of Alloys and Compounds, 2019. doi:10.1016/j.jallcom.2019.05.051 | |
84. | Wang, X.-T., Fu, Y.-H., Na, G.-R. et al. Barium as doping element tuning both toxicity and optoelectric properties of lead-based halide perovskites | [钡作为掺杂元素调控铅基钙钛矿材料的毒性和光电特性]. Wuli Xuebao Acta Physica Sinica, 2019, 68(15): 157101. doi:10.7498/aps.68.20190596 | |
85. | Koech, R.K., Kigozi, M., Bello, A. et al. Recent advances in solar energy harvesting materials with particular emphasis on photovoltaic materials. 2019. doi:10.1109/PowerAfrica.2019.8928859 | |
86. | Arora, Y., Seth, C., Khushalani, D. Crafting Inorganic Materials for Use in Energy Capture and Storage. Langmuir, 2019, 35(28): 9101-9114. doi:10.1021/acs.langmuir.8b02953 | |
87. | Howard, I.A., Abzieher, T., Hossain, I.M. et al. Coated and Printed Perovskites for Photovoltaic Applications. Advanced Materials, 2019, 31(26): 1806702. doi:10.1002/adma.201806702 | |
88. | Liu, Z., Zhao, X., Zunger, A. et al. Design of Mixed-Cation Tri-Layered Pb-Free Halide Perovskites for Optoelectronic Applications. Advanced Electronic Materials, 2019, 5(6): 1900234. doi:10.1002/aelm.201900234 | |
89. | Yu, D., Hu, Y., Shi, J. et al. Stability improvement under high efficiency—next stage development of perovskite solar cells. Science China Chemistry, 2019, 62(6): 684-707. doi:10.1007/s11426-019-9448-3 | |
90. | Hima, A., Lakhdar, N., Benhaoua, B. et al. An optimized perovskite solar cell designs for high conversion efficiency. Superlattices and Microstructures, 2019. doi:10.1016/j.spmi.2019.04.007 | |
91. | Seyyed Abadi, N.M., Banihashemi, M., Kashaninia, A. Simulation and Analysis of a Perovskite Solar Cell with (FAPbI3)0.85(MAPbBr3)0.15 as Absorber Layer. 2019. doi:10.1109/IranianCEE.2019.8786587 | |
92. | Rajbongshi, B.M., Verma, A. Emerging nanotechnology for third generation photovoltaic cells. Nanotechnology Applications in Energy Drug and Food, 2019. doi:10.1007/978-3-319-99602-8_5 | |
93. | Wu, H., Li, F. Oxygen vacancy-assisted high ionic conductivity in perovskite LaCoO3−δ (δ = 1/3) thin film: A first-principles-based study. Physics Letters Section A General Atomic and Solid State Physics, 2019, 383(2-3): 210-214. doi:10.1016/j.physleta.2018.10.012 | |
94. | Jokar, E., Chien, C.-H., Tsai, C.-M. et al. Robust Tin-Based Perovskite Solar Cells with Hybrid Organic Cations to Attain Efficiency Approaching 10%. Advanced Materials, 2019, 31(2): 1804835. doi:10.1002/adma.201804835 | |
95. | Das, S., Pandey, D., Thomas, J. et al. The Role of Graphene and Other 2D Materials in Solar Photovoltaics. Advanced Materials, 2019, 31(1): 1802722. doi:10.1002/adma.201802722 | |
96. | Chi, D., Huang, S., Zhang, M. et al. Composition and Interface Engineering for Efficient and Thermally Stable Pb–Sn Mixed Low-Bandgap Perovskite Solar Cells. Advanced Functional Materials, 2018, 28(51): 1804603. doi:10.1002/adfm.201804603 | |
97. | Najafi, L., Taheri, B., Martín-García, B. et al. MoS2 Quantum Dot/Graphene Hybrids for Advanced Interface Engineering of a CH3NH3PbI3 Perovskite Solar Cell with an Efficiency of over 20%. ACS Nano, 2018, 12(11): 10736-10754. doi:10.1021/acsnano.8b05514 | |
98. | Ciobotaru, I.C., Polosan, S., Ciobotaru, C.C. Organometallic compounds for photovoltaic applications. Inorganica Chimica Acta, 2018. doi:10.1016/j.ica.2018.08.042 | |
99. | Zhao, X.-G., Yang, D., Ren, J.-C. et al. Rational Design of Halide Double Perovskites for Optoelectronic Applications. Joule, 2018, 2(9): 1662-1673. doi:10.1016/j.joule.2018.06.017 | |
100. | Busby, Y., Agresti, A., Pescetelli, S. et al. Aging effects in interface-engineered perovskite solar cells with 2D nanomaterials: A depth profile analysis. Materials Today Energy, 2018. doi:10.1016/j.mtener.2018.04.005 | |
101. | Prakash, J., Singh, A., Sathiyan, G. et al. Progress in tailoring perovskite based solar cells through compositional engineering: Materials properties, photovoltaic performance and critical issues. Materials Today Energy, 2018. doi:10.1016/j.mtener.2018.07.003 | |
102. | Xiong, L., Guo, Y., Wen, J. et al. Review on the Application of SnO2 in Perovskite Solar Cells. Advanced Functional Materials, 2018, 28(35): 1802757. doi:10.1002/adfm.201802757 | |
103. | Bhat, A., Dhamaniya, B.P., Chhillar, P. et al. Analysing the prospects of perovskite solar cells within the purview of recent scientific advancements. Crystals, 2018, 8(6): 242. doi:10.3390/cryst8060242 | |
104. | Huang, W., Liu, Y., Yue, S.Z. et al. Optical bandgap energy of CH3NH3PbI3 perovskite studied by photoconductivity and reflectance spectroscopy. Science China Technological Sciences, 2018, 61(6): 886-892. doi:10.1007/s11431-017-9211-6 | |
105. | Busby, Y., Noël, C., Pescetelli, S. et al. XPS depth profiles of organo lead halide layers and full perovskite solar cells by variable-size argon clusters. Proceedings of SPIE the International Society for Optical Engineering, 2018. doi:10.1117/12.2320488 | |
106. | Li, T., Wang, Q., Nichol, G.S. et al. Extending lead-free hybrid photovoltaic materials to new structures: Thiazolium, aminothiazolium and imidazolium iodobismuthates. Dalton Transactions, 2018, 47(20): 7050-7058. doi:10.1039/c8dt00864g | |
107. | Shaikh, J.S., Shaikh, N.S., Sheikh, A.D. et al. Perovskite solar cells: In pursuit of efficiency and stability. Materials and Design, 2017. doi:10.1016/j.matdes.2017.09.037 | |
108. | Chu, Q.-Q., Ding, B., Li, Y. et al. Fast Drying Boosted Performance Improvement of Low-Temperature Paintable Carbon-Based Perovskite Solar Cell. ACS Sustainable Chemistry and Engineering, 2017, 5(11): 9758-9765. doi:10.1021/acssuschemeng.7b01556 | |
109. | Xing, S.. Study on the development and stability of perovskite solar cells. Aip Conference Proceedings, 2017. doi:10.1063/1.4992935 | |
110. | Sun, Y., Fang, X., Ma, Z. et al. Enhanced UV-light stability of organometal halide perovskite solar cells with interface modification and a UV absorption layer. Journal of Materials Chemistry C, 2017, 5(34): 8682-8687. doi:10.1039/c7tc02603j | |
111. | Jin, X., Lei, X., Wu, C. et al. Cu2-:XGeS3: A new hole transporting material for stable and efficient perovskite solar cells. Journal of Materials Chemistry A, 2017, 5(37): 19884-19891. doi:10.1039/c7ta06088b | |