J. Semicond. > 2017, Volume 38 > Issue 1 > 011002

SPECIAL TOPIC ON PEROVSKITE SOLAR CELLS

Recent progress in stability of perovskite solar cells

Xiaojun Qin1, 2, Zhiguo Zhao1, 2, Yidan Wang1, 2, Junbo Wu1, 2, Qi Jiang3 and Jingbi You3, 4,

+ Author Affiliations

 Corresponding author: Jingbi You, Email:jyou@semi.ac.cn

DOI: 10.1088/1674-4926/38/1/011002

PDF

Abstract: Perovskite solar cells have attracted significant attention in just the past few years in solar cell research fields, where the power conversion efficiency was beyond 22. 1%. Now, the most important challenge for perovskite solar cells in practical applications is the stability issue. In this mini-review, we will summarize the degradation mechanism of perovskite solar cells, including the perovskite material itself and also the interfaces. While we also provide our opinion on improving the stability of perovskite solar cells.

Key words: perovskitesolar cellsstability



[1]
Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131: 6050 doi: 10.1021/ja809598r
[2]
Kim H S, Lee C R, Im J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep, 2012, 2: 591 https://www.researchgate.net/profile/Jacques-E_Moser/publication/230716542_Lead_iodide_perovskite_sensitized_all-solid-state_submicron_thin_film_mesoscopic_solar_cell_with_efficiency_exceeding_9/links/09e41506f09cb81b07000000.pdf
[3]
Lee M M, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338: 643 doi: 10.1126/science.1228604
[4]
Burschka J, Pellet N, Moon S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499: 316 doi: 10.1038/nature12340
[5]
Jeon N J, Noh J H, Kim Y C, et al. Solvent engineering for highperformance inorganic-organic hybrid perovskite solar cells. Nat Mater, 2014, 13: 897 doi: 10.1038/nmat4014
[6]
Jeon N J, Noh J H, Yang W S, et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature, 2015, 517: 476 doi: 10.1038/nature14133
[7]
Yang W S, Noh J H, Jeon N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348: 1234 doi: 10.1126/science.aaa9272
[8]
National renewable energy laboratory best research-cell efficiencies. www.nrel.gov/ncpv/images/efficiency_chart.jpg, 2016
[9]
Christians J A, Herrera P, Kamat P V. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J Am Chem Soc, 2015, 137: 1530 doi: 10.1021/ja511132a
[10]
Habisreutinger S N, Leijtens T, Eperon E, et al. Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett, 2014, 14: 5561 doi: 10.1021/nl501982b
[11]
Supasai T, Rujisamphan N, Ullrich K, et al. Formation of a passivating CH3NH3PbI3/PbI2 interface during moderate heating of CH3NH3PbI3 layers. Appl Phys Lett, 2013, 103: 183906 doi: 10.1063/1.4826116
[12]
Conings B, Drijkoningen J, Gauquelin N, et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv Energy Mater, 2015, 5: 1500477 doi: 10.1002/aenm.201500477
[13]
Chen Q, Zhou H P, Song T B, et al. Controllable self-induced passivation of hybrid lead iodide perovskites toward high perfor mance solar cells. Nano Lett, 2014, 14: 4158 doi: 10.1021/nl501838y
[14]
Azpiroz J M, Mosconi E, Bisquert J, et al. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ Sci, 2015, 8: 2118 doi: 10.1039/C5EE01265A
[15]
Berhe T A, Su W N, Chen C H, et al. Organometal halide perovskite solar cells: degradation and stability. Energy Environ Sci, 2016, 9: 323 doi: 10.1039/C5EE02733K
[16]
You J B, Meng L, Song T B, et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat Nanotech, 2016, 11: 75 http://cn.bing.com/academic/profile?id=cfa525fe83a9f619904826ac20a799fb&encoded=0&v=paper_preview&mkt=zh-cn
[17]
Kim J H, Liang P W, Williams S T, et al. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer. Adv Mater, 2015, 27: 695 doi: 10.1002/adma.201404189
[18]
Ono L K, Raga S R, Remeika M, et al. Pinhole-free hole transport layers significantly improve the stability of MAPbI3-based perovskite solar cells under operating conditions. J Mater Chem A, 2015, 3: 15451 doi: 10.1039/C5TA03443D
[19]
Leijtens T, Eperon G E, Pathak S, et al. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat Commun, 2013, 4: 2885 https://www.researchgate.net/profile/Antonio_Abate/publication/259154549_Overcoming_ultraviolet_light_instability_of_sensitized_TiO2_with_meso-superstructured_organometal_tri-halide_perovskite_solar_cells/links/0a85e52e256d97db57000000.pdf?origin=publication_list
[20]
Nagabhushana G P, Shivaramaiah R, Navrotsky A. Direct calorimetric verification of thermodynamic instability of lead halide hybrid perovskites. PNAS, 2016, 113: 7717 doi: 10.1073/pnas.1607850113
[21]
Eperon G E, Stranks S D, Menelaou C, et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci, 2014, 7: 982 doi: 10.1039/c3ee43822h
[22]
Li Z, Yang M J, Park J S, et al. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem Mater, 2016, 28: 284 doi: 10.1021/acs.chemmater.5b04107
[23]
Lee J W, Kim D H, Kim H S, et al. Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv Energy Mater, 2015, 5: 1501310 doi: 10.1002/aenm.201501310
[24]
Saliba M, Matsui T, Seo J Y, et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci, 2016, 9: 1989 doi: 10.1039/C5EE03874J
[25]
Saliba M, Matsui T, Domanski K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 2016, 354: 206 doi: 10.1126/science.aah5557
[26]
Choi H, Jeong J, Kim H B, et al. Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy, 2014, 7: 80 doi: 10.1016/j.nanoen.2014.04.017
[27]
Mei A, Li X, Liu L, et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014, 345: 295 doi: 10.1126/science.1254763
[28]
Smith I C, Hoke E T, Solis-Ibarra D. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew Chem, 2014, 126: 11414 doi: 10.1002/ange.201406466
[29]
Quan L N, Yuan M J, Comin R, et al. Ligand-stabilized reduceddimensionality perovskites. J Am Chem Soc, 2016, 138: 2649 doi: 10.1021/jacs.5b11740
[30]
Tsai H, Nie W Y, Jean-Christophe B, et al. High-efficiency twodimensional Ruddlesden-Popper perovskite solar cells. Nature, 2016, 536: 312 doi: 10.1038/nature18306
[31]
Colella S, Mosconi E, Fedeli P, et al. MAPbI3-xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties. Chem Mater, 2013, 25: 4613 doi: 10.1021/cm402919x
[32]
You J, Hong Z, Yang Y, et al. Low-temperature solutionprocessed perovskite solar cells with high efficiency and flexibility. ACS Nano, 2014, 8: 1674 doi: 10.1021/nn406020d
[33]
Noh J H, Im S H, Heo J H, et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett, 2013, 13: 1764 doi: 10.1021/nl400349b
[34]
Jeon N J, Noh J H, Yang W S, et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature, 2015, 517: 476 doi: 10.1038/nature14133
[35]
Liu Y S, Hong Z R, Chen Q, et al. Perovskite solar cells employing dopant-free organic hole transport materials with tunable energy levels. Adv Mater, 2016, 28: 440 doi: 10.1002/adma.v28.3
[36]
Liu Y S, Chen Q, Duan H S, et al. A dopant-free organic hole transport material for efficient planar heterojunction perovskite solar cells. J Mater Chem A, 2015, 3: 11940 doi: 10.1039/C5TA02502H
[37]
Qin P, Tanaka S, Ito S, et al. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat Commun, 2014, 5: 3834 http://repository.kaust.edu.sa/kaust/handle/10754/597000
[38]
Christians J A, Fung R C M, Kamat P V. An inorganic hole conductor for organo-lead halide perovskite solar cells improved hole conductivity with copper iodide. J Am Chem Soc, 2014, 136: 758 doi: 10.1021/ja411014k
[39]
Jeng J Y, Chen K C, Chiang T Y, et al. Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planarheterojunction hybrid solar cells. Adv Mater, 2014, 26: 4107 doi: 10.1002/adma.v26.24
[40]
Kim J H, Liang P W, Williams S T, et al. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer. Adv Mater, 2015, 27: 695 doi: 10.1002/adma.201404189
[41]
Park J H, Seo J, Park S, et al. Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition. Adv Mater, 2015, 27: 4013 doi: 10.1002/adma.201500523
[42]
Ye S, Sun W, Li Y, et al. CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%. Nano Lett, 2015, 15: 3723 doi: 10.1021/acs.nanolett.5b00116
[43]
Liu D Y, Kelly T L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat Photonics, 2014, 8: 133 http://cn.bing.com/academic/profile?id=e544adea4a5a7d33adfd0597fb77b8d6&encoded=0&v=paper_preview&mkt=zh-cn
[44]
Dong Q, Shi Y T, Wang K, et al. Insight into perovskite solar cells based on SnO2 compact electron-selective layer. J Phys Chem C, 2015, 119: 10212 doi: 10.1021/acs.jpcc.5b00541?selectedTab=citation&volume=119
[45]
Song J, Zheng E, Bian J, et al. Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells. J Mater Chem A, 2015, 3: 10837 doi: 10.1039/C5TA01207D
[46]
Li Y, Zhu J, Huang Y, et al. Mesoporous SnO2 nanoparticle films as electron transporting material in perovskite solar cells. RSC Adv, 2015, 5: 28424 doi: 10.1039/C5RA01540E
[47]
Ke W, Fang G J, Liu Q, et al. Low-temperature solutionprocessed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J Am Chem Soc, 2015;137: 6730 doi: 10.1021/jacs.5b01994
[48]
Baena J P C, Steier L, Tress W, et al. A highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ Sci, 2015, 8: 2928 doi: 10.1039/C5EE02608C
[49]
Jiang Q, Zhang L Q, Wang H L, et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat Energy, 2016, 1: 16117 doi: 10.1038/nenergy.2016.117
[50]
Chen W, Wu Y Z, Yue Y F, et al., Efficient and stable largearea perovskite solar cells with inorganic charge extraction layers. Science, 2015, 350: 944 doi: 10.1126/science.aad1015
[51]
Zhu Z, Bai Y, Liu X, et al., Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron-transporting layer. Adv Mater, 2016, 28: 6478 doi: 10.1002/adma.201600619
Fig. 1.  (Color online) (a) Photo illustrating the visible degradation of the perovskite layer. The color shifts from almost black to yellow for all organic HTLs except for the films covered with PMMA only or a composite of carbon nanotubes and PMMA[10]. (b) Scanning electron micrographs of perovskite films on planar PEDOT layers (i. e. , no mesoporous scaffold) to highlight morphological changes undergone due to humidity exposure at room temperature in the dark[9].

Fig. 2.  Scan electron microscopy image of ITO/TiO2/perovskite samples that were degraded in different atmospheres for 24 h at 85℃[12].

Fig. 3.  Devices image after storage in ambient air for 10 days. (a) Top Al electrode side: first row (left) perovskite/Al, (right) perovskite/PCBM(40 nm)/Al; second row (left) perovskite/PCBM (75 nm)/Al, (right) perovskite/PCBM (135 nm)/Al; Third row (left) perovskite/ZnO (30 nm)/Al, (right) perovskite/ZnO (70 nm)/Al. (b) Back side of the devices. It can be easily found that the perovksite/Al, perovskite/PCBM (40 nm)/Al, and perovskite/PCBM (75 nm)/Al are seriously degraded, and perovskite/PCBM (135 nm)/Al are slightly degraded. While Perovskite/Al with ZnO showed their original status (The third row in Figs. 3(a) and 3(b)). The strong acid of HI from decomposition of perovskite by water (CH3NH3PbI3 PbI2+CH3NH3I PbI2+CH3NH2+HI) occurs can etch the metal like Al around the perovskite layer[16].

Fig. 4.  Enthalpy formation of MAPbI3 as a function of (a) tolerance factor and (b) lead-halide bond strength (open circles) and electronegativity (solid circles)[20].

Fig. 5.  (Color online) (a) Correlations between tolerance factor and crystal structure of perovskite materials. Shelf life stability of FAPbI3 and FA0. 85Cs0. 15PbI3 solar cells: J-V curves of (b) FAPb3 and (c) FA0. 85Cs0. 15PbI3 solar cells at 0-15 days of storage under 15% RH[22].

Fig. 6.  (Color online) (a) Crystal structures of the 3D perovskite MAPbI3 and (b) the 2D perovskite (PEA)2(MA)2Pb3I10. (c) PXRD patterns of films of (PEA)2(MA)2Pb3I10 (1), MAPbI3 formed from PbI2 (2a), and MAPbI3 formed from PbCl2 (2b), which were exposed to 52% relative humidity. Annealing of films of 2a (15 min) and 2b (80 min) was conducted at 100℃ prior to humidity exposure. Asterisks denote the major reflections from PbI2[28].

Fig. 7.  (Color online) Stability measurements on planar solar cells. (a) and (c) Photostability tests under constant AM1. 5G illumination for 2D ((BA)2(MA)3Pb4I13; red) and 3D (MAPbI3; blue) perovskite devices without (a) and with (c) encapsulation. (b) and (d) Humidity stability tests under 65% relative humidity at in a humidity chamber for 2D; red) and 3D (MAPbI3; blue) perovskite devices without (b) and with (d) encapsulation. PCE, power conversion efficiency[30].

Fig. 8.  (Color online) (a) Power conversion efficiency variation of the heterojunction solar cells based on MAPb(I1-xBr3)x(x = 0, 0. 06, 0. 20, 0. 29) with time stored in air at room temperature without encapsulation. The humidity was maintained at 35%, and the cells were exposed to a humidity of 55% for one day on the fourth day to investigate performance variation at high humidity [33]. (b) Photographs of inorganic-organic hybrid halide powders. Photographs show the colour of the as-prepared MAPbI3, annealed FAPbI3 at 170℃, FAPbI3, (FAPbI3)1-x(MAPbI3)x, (FAPbI3)1-x(FAPbBr3)x, and (FAPbI3)1-x(MAPbBr3)x powders with x=0. 15 (from left to right). The (FAPbI3)1-x(MAPbBr3)x powder is the only black powder among the as-prepared FAPbI3-based materials[34].

Fig. 9.  (Color online) (a) Perovskite solar cells adopting all metal oxide as charge transport layers, and (b) performance degradation in ambient air for 60 days for the devices using organic charge transport layers or inorganic metal oxide charge transport layers[16]. (c) Scheme of the cell configuration highlighting the doped charge carrier extraction layers and (d) stability of sealed cells under simulated solar light (AM 1. 5, 100 mW/cm2, using a 420 nm UV light cut-off filter, surface temperature of the cell: 45 to 50 ° C, bias potential = 0 V)[50].

Fig. 10.  (Color online) (a) Schematic drawing showing the cross section of the triple-layer perovskite-based fully printable mesoscopic solar cell, and (b) the devices stability under light illumination[27].

[1]
Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131: 6050 doi: 10.1021/ja809598r
[2]
Kim H S, Lee C R, Im J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep, 2012, 2: 591 https://www.researchgate.net/profile/Jacques-E_Moser/publication/230716542_Lead_iodide_perovskite_sensitized_all-solid-state_submicron_thin_film_mesoscopic_solar_cell_with_efficiency_exceeding_9/links/09e41506f09cb81b07000000.pdf
[3]
Lee M M, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338: 643 doi: 10.1126/science.1228604
[4]
Burschka J, Pellet N, Moon S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499: 316 doi: 10.1038/nature12340
[5]
Jeon N J, Noh J H, Kim Y C, et al. Solvent engineering for highperformance inorganic-organic hybrid perovskite solar cells. Nat Mater, 2014, 13: 897 doi: 10.1038/nmat4014
[6]
Jeon N J, Noh J H, Yang W S, et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature, 2015, 517: 476 doi: 10.1038/nature14133
[7]
Yang W S, Noh J H, Jeon N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348: 1234 doi: 10.1126/science.aaa9272
[8]
National renewable energy laboratory best research-cell efficiencies. www.nrel.gov/ncpv/images/efficiency_chart.jpg, 2016
[9]
Christians J A, Herrera P, Kamat P V. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J Am Chem Soc, 2015, 137: 1530 doi: 10.1021/ja511132a
[10]
Habisreutinger S N, Leijtens T, Eperon E, et al. Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett, 2014, 14: 5561 doi: 10.1021/nl501982b
[11]
Supasai T, Rujisamphan N, Ullrich K, et al. Formation of a passivating CH3NH3PbI3/PbI2 interface during moderate heating of CH3NH3PbI3 layers. Appl Phys Lett, 2013, 103: 183906 doi: 10.1063/1.4826116
[12]
Conings B, Drijkoningen J, Gauquelin N, et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv Energy Mater, 2015, 5: 1500477 doi: 10.1002/aenm.201500477
[13]
Chen Q, Zhou H P, Song T B, et al. Controllable self-induced passivation of hybrid lead iodide perovskites toward high perfor mance solar cells. Nano Lett, 2014, 14: 4158 doi: 10.1021/nl501838y
[14]
Azpiroz J M, Mosconi E, Bisquert J, et al. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ Sci, 2015, 8: 2118 doi: 10.1039/C5EE01265A
[15]
Berhe T A, Su W N, Chen C H, et al. Organometal halide perovskite solar cells: degradation and stability. Energy Environ Sci, 2016, 9: 323 doi: 10.1039/C5EE02733K
[16]
You J B, Meng L, Song T B, et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat Nanotech, 2016, 11: 75 http://cn.bing.com/academic/profile?id=cfa525fe83a9f619904826ac20a799fb&encoded=0&v=paper_preview&mkt=zh-cn
[17]
Kim J H, Liang P W, Williams S T, et al. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer. Adv Mater, 2015, 27: 695 doi: 10.1002/adma.201404189
[18]
Ono L K, Raga S R, Remeika M, et al. Pinhole-free hole transport layers significantly improve the stability of MAPbI3-based perovskite solar cells under operating conditions. J Mater Chem A, 2015, 3: 15451 doi: 10.1039/C5TA03443D
[19]
Leijtens T, Eperon G E, Pathak S, et al. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat Commun, 2013, 4: 2885 https://www.researchgate.net/profile/Antonio_Abate/publication/259154549_Overcoming_ultraviolet_light_instability_of_sensitized_TiO2_with_meso-superstructured_organometal_tri-halide_perovskite_solar_cells/links/0a85e52e256d97db57000000.pdf?origin=publication_list
[20]
Nagabhushana G P, Shivaramaiah R, Navrotsky A. Direct calorimetric verification of thermodynamic instability of lead halide hybrid perovskites. PNAS, 2016, 113: 7717 doi: 10.1073/pnas.1607850113
[21]
Eperon G E, Stranks S D, Menelaou C, et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci, 2014, 7: 982 doi: 10.1039/c3ee43822h
[22]
Li Z, Yang M J, Park J S, et al. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem Mater, 2016, 28: 284 doi: 10.1021/acs.chemmater.5b04107
[23]
Lee J W, Kim D H, Kim H S, et al. Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv Energy Mater, 2015, 5: 1501310 doi: 10.1002/aenm.201501310
[24]
Saliba M, Matsui T, Seo J Y, et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci, 2016, 9: 1989 doi: 10.1039/C5EE03874J
[25]
Saliba M, Matsui T, Domanski K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 2016, 354: 206 doi: 10.1126/science.aah5557
[26]
Choi H, Jeong J, Kim H B, et al. Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy, 2014, 7: 80 doi: 10.1016/j.nanoen.2014.04.017
[27]
Mei A, Li X, Liu L, et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014, 345: 295 doi: 10.1126/science.1254763
[28]
Smith I C, Hoke E T, Solis-Ibarra D. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew Chem, 2014, 126: 11414 doi: 10.1002/ange.201406466
[29]
Quan L N, Yuan M J, Comin R, et al. Ligand-stabilized reduceddimensionality perovskites. J Am Chem Soc, 2016, 138: 2649 doi: 10.1021/jacs.5b11740
[30]
Tsai H, Nie W Y, Jean-Christophe B, et al. High-efficiency twodimensional Ruddlesden-Popper perovskite solar cells. Nature, 2016, 536: 312 doi: 10.1038/nature18306
[31]
Colella S, Mosconi E, Fedeli P, et al. MAPbI3-xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties. Chem Mater, 2013, 25: 4613 doi: 10.1021/cm402919x
[32]
You J, Hong Z, Yang Y, et al. Low-temperature solutionprocessed perovskite solar cells with high efficiency and flexibility. ACS Nano, 2014, 8: 1674 doi: 10.1021/nn406020d
[33]
Noh J H, Im S H, Heo J H, et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett, 2013, 13: 1764 doi: 10.1021/nl400349b
[34]
Jeon N J, Noh J H, Yang W S, et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature, 2015, 517: 476 doi: 10.1038/nature14133
[35]
Liu Y S, Hong Z R, Chen Q, et al. Perovskite solar cells employing dopant-free organic hole transport materials with tunable energy levels. Adv Mater, 2016, 28: 440 doi: 10.1002/adma.v28.3
[36]
Liu Y S, Chen Q, Duan H S, et al. A dopant-free organic hole transport material for efficient planar heterojunction perovskite solar cells. J Mater Chem A, 2015, 3: 11940 doi: 10.1039/C5TA02502H
[37]
Qin P, Tanaka S, Ito S, et al. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat Commun, 2014, 5: 3834 http://repository.kaust.edu.sa/kaust/handle/10754/597000
[38]
Christians J A, Fung R C M, Kamat P V. An inorganic hole conductor for organo-lead halide perovskite solar cells improved hole conductivity with copper iodide. J Am Chem Soc, 2014, 136: 758 doi: 10.1021/ja411014k
[39]
Jeng J Y, Chen K C, Chiang T Y, et al. Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planarheterojunction hybrid solar cells. Adv Mater, 2014, 26: 4107 doi: 10.1002/adma.v26.24
[40]
Kim J H, Liang P W, Williams S T, et al. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer. Adv Mater, 2015, 27: 695 doi: 10.1002/adma.201404189
[41]
Park J H, Seo J, Park S, et al. Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition. Adv Mater, 2015, 27: 4013 doi: 10.1002/adma.201500523
[42]
Ye S, Sun W, Li Y, et al. CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%. Nano Lett, 2015, 15: 3723 doi: 10.1021/acs.nanolett.5b00116
[43]
Liu D Y, Kelly T L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat Photonics, 2014, 8: 133 http://cn.bing.com/academic/profile?id=e544adea4a5a7d33adfd0597fb77b8d6&encoded=0&v=paper_preview&mkt=zh-cn
[44]
Dong Q, Shi Y T, Wang K, et al. Insight into perovskite solar cells based on SnO2 compact electron-selective layer. J Phys Chem C, 2015, 119: 10212 doi: 10.1021/acs.jpcc.5b00541?selectedTab=citation&volume=119
[45]
Song J, Zheng E, Bian J, et al. Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells. J Mater Chem A, 2015, 3: 10837 doi: 10.1039/C5TA01207D
[46]
Li Y, Zhu J, Huang Y, et al. Mesoporous SnO2 nanoparticle films as electron transporting material in perovskite solar cells. RSC Adv, 2015, 5: 28424 doi: 10.1039/C5RA01540E
[47]
Ke W, Fang G J, Liu Q, et al. Low-temperature solutionprocessed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J Am Chem Soc, 2015;137: 6730 doi: 10.1021/jacs.5b01994
[48]
Baena J P C, Steier L, Tress W, et al. A highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ Sci, 2015, 8: 2928 doi: 10.1039/C5EE02608C
[49]
Jiang Q, Zhang L Q, Wang H L, et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat Energy, 2016, 1: 16117 doi: 10.1038/nenergy.2016.117
[50]
Chen W, Wu Y Z, Yue Y F, et al., Efficient and stable largearea perovskite solar cells with inorganic charge extraction layers. Science, 2015, 350: 944 doi: 10.1126/science.aad1015
[51]
Zhu Z, Bai Y, Liu X, et al., Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron-transporting layer. Adv Mater, 2016, 28: 6478 doi: 10.1002/adma.201600619
1

Recent progress on stability and applications of flexible perovskite photodetectors

Ying Hu, Qianpeng Zhang, Junchao Han, Xinxin Lian, Hualiang Lv, et al.

Journal of Semiconductors, 2025, 46(1): 011601. doi: 10.1088/1674-4926/24080019

2

Magnetron sputtering NiOx for perovskite solar cells

Xiangyi Shen, Xinwu Ke, Yingdong Xia, Qingxun Guo, Yonghua Chen, et al.

Journal of Semiconductors, 2025, 46(5): 051803. doi: 10.1088/1674-4926/24100032

3

Improved efficiency and stability of inverse perovskite solar cells via passivation cleaning

Kunyang Ge, Chunjun Liang

Journal of Semiconductors, 2024, 45(10): 102801. doi: 10.1088/1674-4926/24040033

4

Suppressed light-induced phase transition of CsPbBr2I: Strategies, progress and applications in the photovoltaic field

Hushan Zhang, Zhiwen Jin

Journal of Semiconductors, 2021, 42(7): 071901. doi: 10.1088/1674-4926/42/7/071901

5

A methylammonium iodide healing method for CH3NH3PbI3 perovskite solar cells with high fill factor over 80%

Zhen Li, Guanjun Yang

Journal of Semiconductors, 2021, 42(11): 112202. doi: 10.1088/1674-4926/42/11/112202

6

Surface passivation of perovskite film for efficient solar cells

Yang (Michael) Yang

Journal of Semiconductors, 2019, 40(4): 040204. doi: 10.1088/1674-4926/40/4/040204

7

Improved efficiency and photo-stability of methylamine-free perovskite solar cells via cadmium doping

Yong Chen, Yang Zhao, Qiufeng Ye, Zema Chu, Zhigang Yin, et al.

Journal of Semiconductors, 2019, 40(12): 122201. doi: 10.1088/1674-4926/40/12/122201

8

The stability of a novel weakly alkaline slurry of copper interconnection CMP for GLSI

Caihong Yao, Chenwei Wang, Xinhuan Niu, Yan Wang, Shengjun Tian, et al.

Journal of Semiconductors, 2018, 39(2): 026002. doi: 10.1088/1674-4926/39/2/026002

9

The investigation of an amidine-based additive in the perovskite films and solar cells

Guanhaojie Zheng, Liang Li, Ligang Wang, Xingyu Gao, Huanping Zhou, et al.

Journal of Semiconductors, 2017, 38(1): 014001. doi: 10.1088/1674-4926/38/1/014001

10

Large area perovskite solar cell module

Longhua Cai, Lusheng Liang, Jifeng Wu, Bin Ding, Lili Gao, et al.

Journal of Semiconductors, 2017, 38(1): 014006. doi: 10.1088/1674-4926/38/1/014006

11

Recent progress of dopant-free organic hole-transporting materials in perovskite solar cells

Dongxue Liu, Yongsheng Liu

Journal of Semiconductors, 2017, 38(1): 011005. doi: 10.1088/1674-4926/38/1/011005

12

The effect of multi-intermediate bands on the behavior of an InAs1-xNx/GaAs1-ySby quantum dot solar cell

Abou El-Maaty M. Aly, A. Nasr

Journal of Semiconductors, 2015, 36(4): 042001. doi: 10.1088/1674-4926/36/4/042001

13

Stability for a novel low-pH alkaline slurry during the copper chemical mechanical planarization

Guodong Chen, Yuling Liu, Chenwei Wang, Weijuan Liu, Mengting Jiang, et al.

Journal of Semiconductors, 2014, 35(8): 086001. doi: 10.1088/1674-4926/35/8/086001

14

An InGaAs graded buffer layer in solar cells

Xiaosheng Qu, Hongyin Bao, Hanieh. S. Nikjalal, Liling Xiong, Hongxin Zhen, et al.

Journal of Semiconductors, 2014, 35(1): 014011. doi: 10.1088/1674-4926/35/1/014011

15

Influence of thermal treatment temperatures on CdTe nanocrystal films and photoelectric properties of ITO/CdTe/Al

Xu Wenqing, Qu Shengchun, Wang Kefan, Bi Yu, Liu Kong, et al.

Journal of Semiconductors, 2012, 33(9): 094002. doi: 10.1088/1674-4926/33/9/094002

16

Improving poor fill factors for solar cells via light-induced plating

Xing Zhao, Jia Rui, Ding Wuchang, Meng Yanlong, Jin Zhi, et al.

Journal of Semiconductors, 2012, 33(9): 094008. doi: 10.1088/1674-4926/33/9/094008

17

Influence of absorber doping in a-SiC:H/a-Si:H/a-SiGe:H solar cells

Muhammad Nawaz, Ashfaq Ahmad

Journal of Semiconductors, 2012, 33(4): 042001. doi: 10.1088/1674-4926/33/4/042001

18

Thermal analysis and test for single concentrator solar cells

Cui Min, Chen Nuofu, Yang Xiaoli, Wang Yu, Bai Yiming, et al.

Journal of Semiconductors, 2009, 30(4): 044011. doi: 10.1088/1674-4926/30/4/044011

19

Bifurcation and Dynamic Stability of a Light-InjectionMQW Semiconductor Laser

Yan Senlin

Chinese Journal of Semiconductors , 2006, 27(5): 910-915.

20

A CMOS Fully Integrated Frequency Synthesizer with Stability Compensation

Chinese Journal of Semiconductors , 2005, 26(8): 1524-1531.

1. Jiang, W., Zhu, Y., Liu, J. et al. Improving the Stability of Wide Bandgap Perovskites: Mechanisms, Strategies, and Applications in Tandem Solar Cells. Advanced Materials, 2025, 37(21): 2418500. doi:10.1002/adma.202418500
2. Wu, C., Wang, C., Chen, F. et al. Polyamino acid-mediated crystallization and crystal stabilization in perovskite for efficient and stable photovoltaic devices. Journal of Semiconductors, 2025, 46(5): 052804. doi:10.1088/1674-4926/25030040
3. Yan, C., Liu, P., Bai, G. et al. Influence of surface groups on SnO2 nanoparticles in enhancing perovskite photodetector performance. Organic Electronics, 2025. doi:10.1016/j.orgel.2024.107194
4. Wang, P., Pei, Z., Dai, Q. et al. High performance ultraviolet photodetector based on lead-free bismuth perovskite heterojunction. Bulletin of Materials Science, 2025, 48(1): 3. doi:10.1007/s12034-024-03338-6
5. Geng, Z., Chen, S., Shang, C. et al. Pressure-induced structural and electronic properties of inorganic halide perovskite CsPbBr3. Journal of Solid State Chemistry, 2025. doi:10.1016/j.jssc.2024.125111
6. Wang, C.-F., Yang, Y., Hu, Y. et al. Exploring Aqueous Solution-Processed Pseudohalide Rare-Earth Double Perovskite Ferroelectrics toward X-Ray Detection with High Sensitivity. Angewandte Chemie International Edition, 2024, 63(49): e202413726. doi:10.1002/anie.202413726
7. Nur-E-Alam, M., Islam, M.A., Kar, Y.B. et al. Anti-solvent materials enhanced structural and optical properties on ambiently fabricated perovskite thin films. Scientific Reports, 2024, 14(1): 19995. doi:10.1038/s41598-024-70344-3
8. Basit Shakir, M., Murtaza, G., Ayyaz, A. et al. Computational insight on K2AuBiX6 (X = F, Cl, Br, I) double perovskites to comprehensively investigate mechanical, optoelectronic, and thermoelectric features for green energy applications. Materials Science and Engineering B, 2024. doi:10.1016/j.mseb.2024.117667
9. Qiu, M., Yang, X.-L., Zhao, Z.-X. et al. Water-induced formation of Cs2AgBiBr6/BiOBr heterostructure with enhanced visible-light photocatalytic activity. Advanced Powder Technology, 2024, 35(11): 104679. doi:10.1016/j.apt.2024.104679
10. Devi, M., Kumar, M., Singh, D.V. Impact on green energy conversion and stability of PSC device with the insertion of bifunctional molecule as an interfacial layer. Journal of Physics and Chemistry of Solids, 2024. doi:10.1016/j.jpcs.2024.112247
11. Ding, Y., Feng, E., Lu, S. et al. Stress regulation via surface micro-etching and reconstruction for enhancing triple-cation perovskite solar cells with an efficiency of 25.54%. Energy and Environmental Science, 2024, 17(23): 9268-9277. doi:10.1039/d4ee04248d
12. Zhang, M., Yao, N., Lin, Y. et al. Interfacial electronic and defect engineering coupling of S-scheme CsSnBr3/SnSx (x = 1, 2) heterostructures with carrier dynamics for solar cells. Journal of Materials Chemistry A, 2024, 12(42): 28771-28785. doi:10.1039/d4ta05528d
13. Beygisangchin, M., Kamarudin, S.K., Umar, A.A. et al. Advancements in configuration structures and fabrication techniques for achieving stability in perovskite solar cells: a comprehensive review. Journal of the Korean Ceramic Society, 2024, 61(5): 755-782. doi:10.1007/s43207-024-00401-0
14. Kavadiya, S., Strzalka, J., Sharma, G. et al. Formation and degradation mechanism of methylammonium lead iodide perovskite thin film fabricated by electrospray technique. Solar Energy Materials and Solar Cells, 2024. doi:10.1016/j.solmat.2024.112956
15. Sahoo, G.S., Bhattarai, S., Feddi, E. et al. Unveiling the potential of lead-free Cs2AgBiBr6 (CABB) perovskite for solar cell application. Solar Energy Materials and Solar Cells, 2024. doi:10.1016/j.solmat.2024.112873
16. Ismail, Y.A.M., Abolibda, T.Z., Almohammedi, A. et al. Inherent UV-blocking capability of polyurethane prepared from vegetable oil for solar cell encapsulation. Journal of Materials Science, 2024, 59(15): 6446-6458. doi:10.1007/s10853-024-09558-9
17. Ismail, Y.A.M., Abolibda, T.Z., Almohammedi, A. et al. Castor oil-based polyurethane for affordable solar cell encapsulation. Surface and Coatings Technology, 2024. doi:10.1016/j.surfcoat.2024.130424
18. Halder, S., Chowdhury, K., Mandal, R. Large area perovskite thin film fabrication and application and developments. Comprehensive Materials Processing Volume 1 13 Second Edition, 2024. doi:10.1016/B978-0-323-96020-5.00226-0
19. Wang, S., Chen, C., Zhang, Z. et al. Efficient thermoelectric properties and high UV absorption of stable zinc-doped all-inorganic perovskite for BIPV applications in multiple scenarios. Solar Energy, 2024. doi:10.1016/j.solener.2023.112240
20. Ashebir, E.K., Abay, B.T., Berhe, T.A. Sustainable A2BIBIIIX6 based lead free perovskite solar cells: The challenges and research roadmap for power conversion efficiency improvement. Aims Materials Science, 2024, 11(4): 712-759. doi:10.3934/MATERSCI.2024036
21. Kempf, M.A., Moser, P., Tomoscheit, M. et al. Rapid Spin Depolarization in the Layered 2D Ruddlesden-Popper Perovskite (BA)(MA)PbI. ACS Nano, 2023, 17(24): 25459-25467. doi:10.1021/acsnano.3c09001
22. Zakaria, Y., Aïssa, B., Fix, T. et al. Moderate temperature deposition of RF magnetron sputtered SnO2-based electron transporting layer for triple cation perovskite solar cells. Scientific Reports, 2023, 13(1): 9100. doi:10.1038/s41598-023-35651-1
23. Mehmood, S., Xia, Y., Qu, F. et al. Investigating the Performance of Efficient and Stable Planer Perovskite Solar Cell with an Effective Inorganic Carrier Transport Layer Using SCAPS-1D Simulation. Energies, 2023, 16(21): 7438. doi:10.3390/en16217438
24. Kumar, M., Kumar, S. Numerical analysis of emerging concept of perovskite/silicon heterojunction solar cells. Journal of Computational Electronics, 2023, 22(4): 1061-1074. doi:10.1007/s10825-023-02035-7
25. Wei, J., Wu, J., Wang, Y. et al. The modulation of the electrical and optical properties of Cs2TiBr6 by doping. Materials Advances, 2023, 4(17): 3767-3773. doi:10.1039/d3ma00263b
26. Neelu, N., Pandey, N., Chakrabarti, S. Morphology of highly stable lead-free hybrid organic–inorganic double perovskites (CH3NH3)2XBiCl6 (X = K, Na, Ag) for solar cell applications. Journal of Materials Science, 2023, 58(27): 11139-11158. doi:10.1007/s10853-023-08704-z
27. O’Hara, T., Ravilla, A., McCalmont, E. et al. Novel method of recycling perovskite solar cells using iodide solutions. MRS Advances, 2023, 8(6): 296-301. doi:10.1557/s43580-023-00559-5
28. Talebi, M., Mokhtari, A., Soleimanian, V. Ab-inito simulation of the structural, electronic and optical properties for the vacancy-ordered double perovskites A2TiI6 (A = Cs or NH4); a time-dependent density functional theory study. Journal of Physics and Chemistry of Solids, 2023. doi:10.1016/j.jpcs.2023.111262
29. Zhou, L., Wu, Y., Liu, X. et al. Simulation of Boosting Efficiency of GaAs Absorption Layers with KNbO3 Scatterers for Solar Cells. Energies, 2023, 16(7): 3067. doi:10.3390/en16073067
30. Yan, W., Ma, C., Cai, X. et al. Self-powered and wireless physiological monitoring system with integrated power supply and sensors. Nano Energy, 2023. doi:10.1016/j.nanoen.2023.108203
31. Gan, Y., Qiu, G., Qin, B. et al. Numerical Analysis of Stable (FAPbI3)0.85(MAPbBr3)0.15-Based Perovskite Solar Cell with TiO2/ZnO Double Electron Layer. Nanomaterials, 2023, 13(8): 1313. doi:10.3390/nano13081313
32. Zhang, Y., Zhang, G., Zhang, H. et al. Re-emerging photo responsiveness enhancement under compression in (NH4)2SeBr6. Applied Physics Letters, 2023, 122(13): 132101. doi:10.1063/5.0135599
33. Zhai, M., Chen, C., Cheng, M. Advancing Lead-Free Cs2AgBiBr6 perovskite solar cells: Challenges and strategies. Solar Energy, 2023. doi:10.1016/j.solener.2023.02.027
34. Darshani, M.P., Shaw, R., Sharma, R. Investigation of the Trail Environment to Enhance the Efficiency of the Solar Cell through Pre-Installation Study. Journal of Scientific and Industrial Research, 2023, 82(3): 307-315. doi:10.56042/jsir.v82i03.61784
35. Liu, X., Liu, T., Chen, D. et al. Broad-Spectrum Germanium Photodetector Based on the Ytterbium-Doped Perovskite Nanocrystal Downshifting Effect. ACS Applied Optical Materials, 2023, 1(1): 507-512. doi:10.1021/acsaom.2c00139
36. Yadav, V., Pandey, R. Photovoltaic Behaviour of Cs2BiAgI6 Solar Cells: Investigating Bulk Defect Density via SCAPS-1d Simulations. 2023. doi:10.1109/RMKMATE59243.2023.10369577
37. Gao, Y., Yang, X., Tan, Z. et al. Effects of beam splitting on photovoltaic properties of monocrystalline silicon, multicrystalline silicon, GaAs, and perovskite solar cells for hybrid utilization. International Journal of Green Energy, 2023, 20(8): 835-843. doi:10.1080/15435075.2022.2119855
38. Ndlovu, S., Ollengo, M.A., Muchuweni, E. et al. Current advances in perovskite oxides supported on graphene-based materials as interfacial layers of perovskite solar cells. Critical Reviews in Solid State and Materials Sciences, 2023, 48(1): 112-131. doi:10.1080/10408436.2022.2041395
39. Dong, W., Qiao, W., Xiong, S. et al. Surface Passivation and Energetic Modification Suppress Nonradiative Recombination in Perovskite Solar Cells. Nano Micro Letters, 2022, 14(1): 108. doi:10.1007/s40820-022-00854-0
40. Shahinuzzaman, M., Afroz, S., Mohafez, H. et al. Roles of Inorganic Oxide Based HTMs towards Highly Efficient and Long-Term Stable PSC—A Review. Nanomaterials, 2022, 12(17): 3003. doi:10.3390/nano12173003
41. Eze, M.C., Eze, H.U., Ugwuanyi, G.N. et al. Improving the efficiency and stability of in-air fabricated perovskite solar cells using the mixed antisolvent of methyl acetate and chloroform. Organic Electronics, 2022. doi:10.1016/j.orgel.2022.106552
42. Wu, F., zhao, Y., Yao, L. et al. Manipulating back contact enables over 8%-efficient carbon-based Sb2(S, Se)3 solar cells. Chemical Engineering Journal, 2022. doi:10.1016/j.cej.2022.135872
43. Zhou, J., Zhong, M. Recent progress of interface engineering for lead halide perovskite solar cells | [铅卤钙钛矿太阳能电池界面工程的近期进展]. Fuhe Cailiao Xuebao Acta Materiae Compositae Sinica, 2022, 39(5): 1937-1955. doi:10.13801/j.cnki.fhclxb.20220303.001
44. Ming, S., Wang, Z., Wu, L. et al. SnO2 Thin Film Prepared by Atomic Layer Deposition Technology and Its Effect on the Performance of Perovskite Solar Cells | [原子层沉积法制备SnO2薄膜及其对钙钛矿电池性能的影响]. Cailiao Daobao Materials Reports, 2022, 36(7): 20110236. doi:10.11896/cldb.20110236
45. Zhu, W., Wang, S., Zhang, X. et al. Ion Migration in Organic–Inorganic Hybrid Perovskite Solar Cells: Current Understanding and Perspectives. Small, 2022, 18(15): 2105783. doi:10.1002/smll.202105783
46. Príncipe, J., Duarte, V.C.M., Andrade, L. Inverted Perovskite Solar Cells: The Emergence of a Highly Stable and Efficient Architecture. Energy Technology, 2022, 10(4): 2100952. doi:10.1002/ente.202100952
47. Wu, D., Huo, B., Huang, Y. et al. Synthesis of Stable Lead-Free Cs3Sb2(BrxI1−x)9 (0 ≤ x ≤ 1) Perovskite Nanoplatelets and Their Application in CO2 Photocatalytic Reduction. Small, 2022, 18(12): 2106001. doi:10.1002/smll.202106001
48. Heydari, Z., Madani, M., Majidian-Taleghani, N. et al. A comparative study of mixed halide perovskite thin film preparation by three- and two-step electrodeposition techniques. Optical Materials, 2022. doi:10.1016/j.optmat.2021.111909
49. Wang, Y.-Y., Zhang, Y.-Z., Wei, J.-W. et al. First Principles Calculation on Photoelectric Properties of Cs2TiBr6 by Substitution Doping with Cl and Pd. Chinese Journal of Inorganic Chemistry, 2022, 38(5): 884-890. doi:10.11862/CJIC.2022.102
50. Zhang, F., Berry, J.J., Zhu, K. 1.18 - The Promise of Perovskite Solar Cells. Comprehensive Renewable Energy Second Edition Volume 1 9, 2022. doi:10.1016/B978-0-12-819727-1.00150-3
51. Appadurai, T., Kashikar, R., Sikarwar, P. et al. Manipulation of parity and polarization through structural distortion in light-emitting halide double perovskites. Communications Materials, 2021, 2(1): 68. doi:10.1038/s43246-021-00172-9
52. Elsmani, M.I., Fatima, N., Jallorina, M.P.A. et al. Recent issues and configuration factors in perovskite-silicon tandem solar cells towards large scaling production. Nanomaterials, 2021, 11(12): 3186. doi:10.3390/nano11123186
53. Ka, I., Asuo, I.M., Nechache, R. et al. Highly stable air processed perovskite solar cells by interfacial layer engineering. Chemical Engineering Journal, 2021. doi:10.1016/j.cej.2021.130334
54. Liu, T., Liu, X., Chen, D. et al. Drop-casting CsPbBr3perovskite quantum dots as down-shifting layer enhancing the ultraviolet response of silicon avalanche photodiode. Applied Physics Letters, 2021, 119(15): 153501. doi:10.1063/5.0067710
55. Zhao, X., Tang, T., Xie, Q. et al. First-principles study on the electronic and optical properties of the orthorhombic CsPbBr3and CsPbI3withCmcmspace group. New Journal of Chemistry, 2021, 45(35): 15857-15862. doi:10.1039/d1nj02216d
56. Wu, P., Wang, S., Li, X. et al. Advances in SnO2-based perovskite solar cells: From preparation to photovoltaic applications. Journal of Materials Chemistry A, 2021, 9(35): 19554-19588. doi:10.1039/d1ta04130d
57. Gaddam, S.K., Pothu, R., Boddula, R. Advanced polymer encapsulates for photovoltaic devices − A review. Journal of Materiomics, 2021, 7(5): 920-928. doi:10.1016/j.jmat.2021.04.004
58. Hu, Y., Li, L., Xu, C. et al. Study of high metal doped SnO2 for photovoltaic devices. Materials Today Communications, 2021. doi:10.1016/j.mtcomm.2021.102148
59. Zhao, X., Tang, R., Zhang, L. et al. Efficient coaxial n-i-p heterojunction Sb2S3 solar cells. Journal of Physics D Applied Physics, 2021, 54(13): 134001. doi:10.1088/1361-6463/abd3cc
60. Aftab, A., Ahmad, M.I. A review of stability and progress in tin halide perovskite solar cell. Solar Energy, 2021. doi:10.1016/j.solener.2020.12.065
61. Liu, Z., Yang, H., Wang, J. et al. Synthesis of lead-free Cs2AgBix6 (X = Cl, Br, I) double perovskite nanoplatelets and their application in CO2 photocatalytic reduction. Nano Letters, 2021, 21(4): 1620-1627. doi:10.1021/acs.nanolett.0c04148
62. Ankaiah, B., Hampannavar, S. Perovskite Solar Cells with Electron and Hole Transport Absorber Layers of High-Power Conversion Efficiency by Numerical Simulations Design using SCAPS. 2021. doi:10.1109/ICMNWC52512.2021.9688534
63. De, S., Acharya, S., Sahoo, S. et al. 2D Materials for Solar Cell Applications. Materials for Solar Energy Conversion Materials Methods and Applications, 2021. doi:10.1002/9781119752202.ch9
64. Mujahid, M., Chen, C., Zhang, J. et al. Recent advances in semitransparent perovskite solar cells. Infomat, 2021, 3(1): 101-124. doi:10.1002/inf2.12154
65. Lefler, B.M., May, S.J., Fafarman, A.T. Role of fluoride and fluorocarbons in enhanced stability and performance of halide perovskites for photovoltaics. Physical Review Materials, 2020, 4(12): 120301. doi:10.1103/PhysRevMaterials.4.120301
66. Ma, Y., Yin, Y., Li, G. et al. Aqueous solution processed MoS3as an eco-friendly hole-transport layer for all-inorganic Sb2Se3solar cells. Chemical Communications, 2020, 56(96): 15173-15176. doi:10.1039/d0cc05997h
67. Yao, P.-P., Wang, L.-R., Wang, J.-X. et al. Evolutions of structural and optical properties of lead-free double perovskite Cs2TeCl6 under high pressure | [高压下非铅双钙钛矿Cs2TeCl6的结构和光学性质]. Wuli Xuebao Acta Physica Sinica, 2020, 69(21): 218801. doi:10.7498/aps.69.20200988
68. Hailegnaw, B., Sariciftci, N.S., Scharber, M.C. Impedance Spectroscopy of Perovskite Solar Cells: Studying the Dynamics of Charge Carriers Before and After Continuous Operation. Physica Status Solidi A Applications and Materials Science, 2020, 217(22): 2000291. doi:10.1002/pssa.202000291
69. Gordillo, G., Torres, O.G., Abella, M.C. et al. Improving the stability of MAPbI3films by using a new synthesis route. Journal of Materials Research and Technology, 2020, 9(6): 13759-13769. doi:10.1016/j.jmrt.2020.09.095
70. Kothandaraman, R.K., Jiang, Y., Feurer, T. et al. Near-Infrared-Transparent Perovskite Solar Cells and Perovskite-Based Tandem Photovoltaics. Small Methods, 2020, 4(10): 2000395. doi:10.1002/smtd.202000395
71. Sun, Q., Yin, W.-J., Wei, S.-H. Searching for stable perovskite solar cell materials using materials genome techniques and high-throughput calculations. Journal of Materials Chemistry C, 2020, 8(35): 12012-12035. doi:10.1039/d0tc02231d
72. Tang, R., Wang, X., Lian, W. et al. Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency. Nature Energy, 2020, 5(8): 587-595. doi:10.1038/s41560-020-0652-3
73. Ajayan, J., Nirmal, D., Mohankumar, P. et al. A review of photovoltaic performance of organic/inorganic solar cells for future renewable and sustainable energy technologies. Superlattices and Microstructures, 2020. doi:10.1016/j.spmi.2020.106549
74. Chang, S.H., Tseng, P.-C., Chiang, S.-E. et al. Structural, optical and excitonic properties of MAxCs1-xPb(IxBr1-x)3 alloy thin films and their application in solar cells. Solar Energy Materials and Solar Cells, 2020. doi:10.1016/j.solmat.2020.110478
75. Chen, L.-C., Tien, C.-H., Jhou, Y.-C. et al. Co-solvent controllable engineering of Ma0.5Fa0.5Pb0.8Sn0.2I3 lead–tin mixed perovskites for inverted perovskite solar cells with improved stability. Energies, 2020, 13(10): 2438. doi:10.3390/en13102438
76. Wang, L., Yao, P., Wang, F. et al. Pressure-Induced Structural Evolution and Bandgap Optimization of Lead-Free Halide Double Perovskite (NH4)2SeBr6. Advanced Science, 2020, 7(6): 1902900. doi:10.1002/advs.201902900
77. Zhang, F., Zhu, K. Perovskite solar cells. Advanced Characterization of Thin Film Solar Cells, 2020.
78. Xu, Q., Stroppa, A., Lv, J. et al. Impact of organic molecule rotation on the optoelectronic properties of hybrid halide perovskites. Physical Review Materials, 2019, 3(12): 125401. doi:10.1103/PhysRevMaterials.3.125401
79. Polosan, S., Ciobotaru, C.C., Ciobotaru, I.C. Charge Transfer from Alq3-5Cl to Graphene Oxide in Donor–Acceptor Heterostructures. Journal of Electronic Materials, 2019, 48(11): 7184-7191. doi:10.1007/s11664-019-07531-w
80. Hu, Q., Rezaee, E., Dong, L. et al. Molecularly Designed Zinc (II) Phthalocyanine Derivative as Dopant-Free Hole-Transporting Material of Planar Perovskite Solar Cell with Preferential Face-on Orientation. Solar Rrl, 2019, 3(11): 1900182. doi:10.1002/solr.201900182
81. Castro-Méndez, A.-F., Hidalgo, J., Correa-Baena, J.-P. The Role of Grain Boundaries in Perovskite Solar Cells. Advanced Energy Materials, 2019, 9(38): 1901489. doi:10.1002/aenm.201901489
82. Dong, L., Hu, Q., Rezaee, E. et al. Dopant-Free Hole-Transporting Layer Based on Isomer-Pure Tetra-Butyl-Substituted Zinc(II) Phthalocyanine for Planar Perovskite Solar Cells. Solar Rrl, 2019, 3(9): 1900119. doi:10.1002/solr.201900119
83. Lee, H.-J., Cho, S.-P., Na, S.-I. et al. Thin metal top electrode and interface engineering for efficient and air-stable semitransparent perovskite solar cells. Journal of Alloys and Compounds, 2019. doi:10.1016/j.jallcom.2019.05.051
84. Wang, X.-T., Fu, Y.-H., Na, G.-R. et al. Barium as doping element tuning both toxicity and optoelectric properties of lead-based halide perovskites | [钡作为掺杂元素调控铅基钙钛矿材料的毒性和光电特性]. Wuli Xuebao Acta Physica Sinica, 2019, 68(15): 157101. doi:10.7498/aps.68.20190596
85. Koech, R.K., Kigozi, M., Bello, A. et al. Recent advances in solar energy harvesting materials with particular emphasis on photovoltaic materials. 2019. doi:10.1109/PowerAfrica.2019.8928859
86. Arora, Y., Seth, C., Khushalani, D. Crafting Inorganic Materials for Use in Energy Capture and Storage. Langmuir, 2019, 35(28): 9101-9114. doi:10.1021/acs.langmuir.8b02953
87. Howard, I.A., Abzieher, T., Hossain, I.M. et al. Coated and Printed Perovskites for Photovoltaic Applications. Advanced Materials, 2019, 31(26): 1806702. doi:10.1002/adma.201806702
88. Liu, Z., Zhao, X., Zunger, A. et al. Design of Mixed-Cation Tri-Layered Pb-Free Halide Perovskites for Optoelectronic Applications. Advanced Electronic Materials, 2019, 5(6): 1900234. doi:10.1002/aelm.201900234
89. Yu, D., Hu, Y., Shi, J. et al. Stability improvement under high efficiency—next stage development of perovskite solar cells. Science China Chemistry, 2019, 62(6): 684-707. doi:10.1007/s11426-019-9448-3
90. Hima, A., Lakhdar, N., Benhaoua, B. et al. An optimized perovskite solar cell designs for high conversion efficiency. Superlattices and Microstructures, 2019. doi:10.1016/j.spmi.2019.04.007
91. Seyyed Abadi, N.M., Banihashemi, M., Kashaninia, A. Simulation and Analysis of a Perovskite Solar Cell with (FAPbI3)0.85(MAPbBr3)0.15 as Absorber Layer. 2019. doi:10.1109/IranianCEE.2019.8786587
92. Rajbongshi, B.M., Verma, A. Emerging nanotechnology for third generation photovoltaic cells. Nanotechnology Applications in Energy Drug and Food, 2019. doi:10.1007/978-3-319-99602-8_5
93. Wu, H., Li, F. Oxygen vacancy-assisted high ionic conductivity in perovskite LaCoO3−δ (δ = 1/3) thin film: A first-principles-based study. Physics Letters Section A General Atomic and Solid State Physics, 2019, 383(2-3): 210-214. doi:10.1016/j.physleta.2018.10.012
94. Jokar, E., Chien, C.-H., Tsai, C.-M. et al. Robust Tin-Based Perovskite Solar Cells with Hybrid Organic Cations to Attain Efficiency Approaching 10%. Advanced Materials, 2019, 31(2): 1804835. doi:10.1002/adma.201804835
95. Das, S., Pandey, D., Thomas, J. et al. The Role of Graphene and Other 2D Materials in Solar Photovoltaics. Advanced Materials, 2019, 31(1): 1802722. doi:10.1002/adma.201802722
96. Chi, D., Huang, S., Zhang, M. et al. Composition and Interface Engineering for Efficient and Thermally Stable Pb–Sn Mixed Low-Bandgap Perovskite Solar Cells. Advanced Functional Materials, 2018, 28(51): 1804603. doi:10.1002/adfm.201804603
97. Najafi, L., Taheri, B., Martín-García, B. et al. MoS2 Quantum Dot/Graphene Hybrids for Advanced Interface Engineering of a CH3NH3PbI3 Perovskite Solar Cell with an Efficiency of over 20%. ACS Nano, 2018, 12(11): 10736-10754. doi:10.1021/acsnano.8b05514
98. Ciobotaru, I.C., Polosan, S., Ciobotaru, C.C. Organometallic compounds for photovoltaic applications. Inorganica Chimica Acta, 2018. doi:10.1016/j.ica.2018.08.042
99. Zhao, X.-G., Yang, D., Ren, J.-C. et al. Rational Design of Halide Double Perovskites for Optoelectronic Applications. Joule, 2018, 2(9): 1662-1673. doi:10.1016/j.joule.2018.06.017
100. Busby, Y., Agresti, A., Pescetelli, S. et al. Aging effects in interface-engineered perovskite solar cells with 2D nanomaterials: A depth profile analysis. Materials Today Energy, 2018. doi:10.1016/j.mtener.2018.04.005
101. Prakash, J., Singh, A., Sathiyan, G. et al. Progress in tailoring perovskite based solar cells through compositional engineering: Materials properties, photovoltaic performance and critical issues. Materials Today Energy, 2018. doi:10.1016/j.mtener.2018.07.003
102. Xiong, L., Guo, Y., Wen, J. et al. Review on the Application of SnO2 in Perovskite Solar Cells. Advanced Functional Materials, 2018, 28(35): 1802757. doi:10.1002/adfm.201802757
103. Bhat, A., Dhamaniya, B.P., Chhillar, P. et al. Analysing the prospects of perovskite solar cells within the purview of recent scientific advancements. Crystals, 2018, 8(6): 242. doi:10.3390/cryst8060242
104. Huang, W., Liu, Y., Yue, S.Z. et al. Optical bandgap energy of CH3NH3PbI3 perovskite studied by photoconductivity and reflectance spectroscopy. Science China Technological Sciences, 2018, 61(6): 886-892. doi:10.1007/s11431-017-9211-6
105. Busby, Y., Noël, C., Pescetelli, S. et al. XPS depth profiles of organo lead halide layers and full perovskite solar cells by variable-size argon clusters. Proceedings of SPIE the International Society for Optical Engineering, 2018. doi:10.1117/12.2320488
106. Li, T., Wang, Q., Nichol, G.S. et al. Extending lead-free hybrid photovoltaic materials to new structures: Thiazolium, aminothiazolium and imidazolium iodobismuthates. Dalton Transactions, 2018, 47(20): 7050-7058. doi:10.1039/c8dt00864g
107. Shaikh, J.S., Shaikh, N.S., Sheikh, A.D. et al. Perovskite solar cells: In pursuit of efficiency and stability. Materials and Design, 2017. doi:10.1016/j.matdes.2017.09.037
108. Chu, Q.-Q., Ding, B., Li, Y. et al. Fast Drying Boosted Performance Improvement of Low-Temperature Paintable Carbon-Based Perovskite Solar Cell. ACS Sustainable Chemistry and Engineering, 2017, 5(11): 9758-9765. doi:10.1021/acssuschemeng.7b01556
109. Xing, S.. Study on the development and stability of perovskite solar cells. Aip Conference Proceedings, 2017. doi:10.1063/1.4992935
110. Sun, Y., Fang, X., Ma, Z. et al. Enhanced UV-light stability of organometal halide perovskite solar cells with interface modification and a UV absorption layer. Journal of Materials Chemistry C, 2017, 5(34): 8682-8687. doi:10.1039/c7tc02603j
111. Jin, X., Lei, X., Wu, C. et al. Cu2-:XGeS3: A new hole transporting material for stable and efficient perovskite solar cells. Journal of Materials Chemistry A, 2017, 5(37): 19884-19891. doi:10.1039/c7ta06088b
  • Search

    Advanced Search >>

    GET CITATION

    Xiaojun Qin, Zhiguo Zhao, Yidan Wang, Junbo Wu, Qi Jiang, Jingbi You. Recent progress in stability of perovskite solar cells[J]. Journal of Semiconductors, 2017, 38(1): 011002. doi: 10.1088/1674-4926/38/1/011002
    X J Qin, Z G Zhao, Y D Wang, J B Wu, Q Jiang, J B You. Recent progress in stability of perovskite solar cells[J]. J. Semicond., 2017, 38(1): 011002. doi: 10.1088/1674-4926/38/1/011002.
    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 8339 Times PDF downloads: 193 Times Cited by: 111 Times

    History

    Received: 15 November 2016 Revised: 03 December 2016 Online: Published: 01 January 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xiaojun Qin, Zhiguo Zhao, Yidan Wang, Junbo Wu, Qi Jiang, Jingbi You. Recent progress in stability of perovskite solar cells[J]. Journal of Semiconductors, 2017, 38(1): 011002. doi: 10.1088/1674-4926/38/1/011002 ****X J Qin, Z G Zhao, Y D Wang, J B Wu, Q Jiang, J B You. Recent progress in stability of perovskite solar cells[J]. J. Semicond., 2017, 38(1): 011002. doi: 10.1088/1674-4926/38/1/011002.
      Citation:
      Xiaojun Qin, Zhiguo Zhao, Yidan Wang, Junbo Wu, Qi Jiang, Jingbi You. Recent progress in stability of perovskite solar cells[J]. Journal of Semiconductors, 2017, 38(1): 011002. doi: 10.1088/1674-4926/38/1/011002 ****
      X J Qin, Z G Zhao, Y D Wang, J B Wu, Q Jiang, J B You. Recent progress in stability of perovskite solar cells[J]. J. Semicond., 2017, 38(1): 011002. doi: 10.1088/1674-4926/38/1/011002.

      Recent progress in stability of perovskite solar cells

      DOI: 10.1088/1674-4926/38/1/011002
      Funds:

      the National Key Research and Development Program of China 2016YFB0700700

      the National 1000 Young Talent Awards, and the National Natural Science Foundation of China 61574133

      Project supported by China Huaneng Group Project High Performance Perovskite Solar Cells (No. TW-15-HJK01), the National Key Research and Development Program of China (No. 2016YFB0700700), the National 1000 Young Talent Awards, and the National Natural Science Foundation of China (No. 61574133)

      China Huaneng Group Project High Performance Perovskite Solar Cells TW-15-HJK01

      More Information
      • Corresponding author: Jingbi You, Email:jyou@semi.ac.cn
      • Received Date: 2016-11-15
      • Revised Date: 2016-12-03
      • Published Date: 2017-01-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return