J. Semicond. > 2017, Volume 38 > Issue 3 > 034002

SPECIAL TOPIC ON 2D MATERIALS AND DEVICES

Enhancement of photodetection based on perovskite/MoS2 hybrid thin film transistor

Fengjing Liu1, 2, Jiawei Wang2, Liang Wang2, Xiaoyong Cai2, Chao Jiang2, and Gongtang Wang1,

+ Author Affiliations

 Corresponding author: Chao Jiang, Email:Jiangch@nanoctr.cn; Gongtang Wang,Email:wanggt@sdnu.edu.cn

DOI: 10.1088/1674-4926/38/3/034002

PDF

Abstract: Perovskite/MoS2 hybrid thin film transistor photodetectors consist of few-layered MoS2 and CH3NH3PbI3 film with various thickness prepared by two-step vacuum deposition. By implementing perovskite CH3NH3PbI3 film onto the MoS2 flake, the perovskite/MoS2 hybrid photodetector exhibited a photoresponsivity of 104A/W and fast response time of about 40 ms. Improvement of photodetection performance is attributed to the balance between light absorption in the perovskite layer and an effective transfer of photogenerated carriers from perovskite entering the MoS2 channel. This work may provide guidance to develop high-performance hybrid structure optoelectronic devices.

Key words: perovskiteMoS2photodetector



[1]
Sangwan V K, Jariwala D, Kim I S, et al. Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. Nat Nanotech, 2015, 10(5):403 doi: 10.1038/nnano.2015.56
[2]
Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotech, 2013, 8(7):497 doi: 10.1038/nnano.2013.100
[3]
Gong Y J, Lin J H, Wang X L, et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat Mater, 2014, 13(12):1135 doi: 10.1038/nmat4091
[4]
Liu Y, Weiss N O, Duan X, et al. Van der Waals heterostructures and devices. Nat Rev Mater, 2016:16042
[5]
Li X, Lin M W, Lin J, et al. Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy. Sci Adv, 2016, 2(4):e1501882 https://www.ornl.gov/content/two-dimensional-gasemose2-misfit-bilayer-heterojunctions-van-der-waals-epitaxy
[6]
Kim S, Konar A, Hwang W S, et al. High-mobility and lowpower thin-film transistors based on multilayer MoS2 crystals. Nat Commun, 2012, 3:1011 doi: 10.1038/ncomms2018
[7]
Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotech, 2013, 8(7):497 doi: 10.1038/nnano.2013.100
[8]
Choi W, Cho M Y, Konar A, et al. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv Mater, 2012, 24(43):5832 doi: 10.1002/adma.201201909
[9]
Yu S H, Lee Y, Jang S K, et al. Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse. ACS Nano, 2014, 8(8):8285 doi: 10.1021/nn502715h
[10]
Pak J, Jang J, Cho K, et al. Enhancement of photodetection characteristics of MoS2 field effect transistors using surface treatment with copper phthalocyanine. Nanoscale, 2015, 7(44):18780 doi: 10.1039/C5NR04836B
[11]
Kufer D, Nikitskiy I, Lasanta T, et al. Hybrid 2D-0D MoS2-PbS quantum dot photodetectors. Adv Mater, 2015, 27(1):176 doi: 10.1002/adma.v27.1
[12]
Kazim S, Nazeeruddin M K, Gratzel M, et al. Perovskite as light harvester:a game changer in photovoltaics. Angew Chem Int Edit, 2014, 53(11):2812 doi: 10.1002/anie.v53.11
[13]
Kim H S, Lee C R, Im J H, et al. Lead Iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep, 2012, 2:7 https://www.researchgate.net/profile/Jacques-E_Moser/publication/230716542_Lead_Iodide_Perovskite_Sensitized_All-Solid-State_Submicron_Thin_Film_Mesoscopic_Solar_Cell_with_Efficiency_Exceeding_9/links/09e41506f09cb81b07000000.pdf?origin=publication_detail
[14]
Yang W S, Noh J H, Jeon N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348(6240):1234 doi: 10.1126/science.aaa9272
[15]
Lee Y, Kwon J, Hwang E, et al. High-performance perovskitegraphene hybrid photodetector. Adv Mater, 2015, 27(1):41 doi: 10.1002/adma.v27.1
[16]
Kwak D H, Lim D H, Ra H S, et al. High performance hybrid graphene-CsPbBr3-xIx perovskite nanocrystal photodetector. RSC Adv, 2016, 6(69):65252 doi: 10.1039/C6RA08699C
[17]
Ma C, Shi Y M, Hu W J, et al. Heterostructured WS2/CH3NH3PbI3 photoconductors with suppressed dark current and enhanced photodetectivity. Adv Mater, 2016, 28(19):3683 doi: 10.1002/adma.v28.19
[18]
Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotech, 2011, 6(3):147 doi: 10.1038/nnano.2010.279
[19]
Shkrob I A, Marin T W. Charge trapping in photovoltaically active perovskites and related halogenoplumbate compounds. J Phys Chem Lett, 2014, 5(7):1066 doi: 10.1021/jz5004022
[20]
Kim J, Lee S H, Lee J H, et al. The role of intrinsic defects in methylammonium lead iodide perovskite. J Phys Chem Lett, 2014, 5(8):1312 doi: 10.1021/jz500370k
[21]
Dong R, Fang Y, Chae J, et al. High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites. Adv Mater, 2015, 27(11):1912 doi: 10.1002/adma.v27.11
[22]
Zhang H, Cheng J Q, Lin F, et al. Pinhole-free and surfacenanostructured niox film by room-temperature solution process for high-performance flexible perovskite solar cells with good stability and reproducibility. ACS Nano, 2016, 10(1):1503 doi: 10.1021/acsnano.5b07043
Fig. 1.  (a) Schematic of the perovskite/MoS2 photodetector. The molecular structures of the MoS2 and perovskite are also shown. (b) Optical images of a fabricated MoS2 FET device and perovskite/MoS2 hybrid photodetector, with perovskite stacking on the MoS2 FET. The AFM image of the MoS2 FET channel is also shown. (c) X-ray diffraction (XRD) spectra of the CH3NH3PbI3 perovskite on SiO2. (d) SEM picture of CH3NH3PbI3 deposited on MoS2.

Fig. 2.  (Color online) (a) Ids - Vg curves of the MoS2 devices without (black) and with (red) 100 nm perovskite deposition measured at a fixed Vds=2 V. (b) Ids - Vg curves measured at a fixed Vds=2 V under dark and illuminated conditions (wavelength =450 nm) at different laser intensities. Insert is the partial enlarged drawing from Vg=5 V to Vg=10 V. (c) Photocurrent of four devices with different perovskite thickness measured at Vg=5 V and Vds=2 V. (d) Photoresponsivity of four devices as a function of incident laser power.

Fig. 3.  (a) UV-vis spectra of three different perovskite thickness devices. (b) Steady-state photoluminescence (PL) spectra of device 2, device 3, device 4. The black line is the PL from perovskite area; the red line is from perovskite/MoS2 area.

Fig. 4.  (a) Stability test of photoswitching characteristics of perovskite/MoS2 photodetector at Vgs=5 V, Vds=2 V, Plight=5.9 mW/cm2. (b) The photoresponse curves of the device and the fitted lines (red) rising and (blue) decaying response curves.

Table 1.   Summary of the thickness and electrical properties of MoS2 FETs.

DevicePbI2 thickness(nm)Mobility(cm2V-1s-1)Responsivity (A/W)
#1019.71.5×103
#25020.46.6×103
#310019.71.1×104
#420020.36.7×103
DownLoad: CSV
[1]
Sangwan V K, Jariwala D, Kim I S, et al. Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. Nat Nanotech, 2015, 10(5):403 doi: 10.1038/nnano.2015.56
[2]
Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotech, 2013, 8(7):497 doi: 10.1038/nnano.2013.100
[3]
Gong Y J, Lin J H, Wang X L, et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat Mater, 2014, 13(12):1135 doi: 10.1038/nmat4091
[4]
Liu Y, Weiss N O, Duan X, et al. Van der Waals heterostructures and devices. Nat Rev Mater, 2016:16042
[5]
Li X, Lin M W, Lin J, et al. Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy. Sci Adv, 2016, 2(4):e1501882 https://www.ornl.gov/content/two-dimensional-gasemose2-misfit-bilayer-heterojunctions-van-der-waals-epitaxy
[6]
Kim S, Konar A, Hwang W S, et al. High-mobility and lowpower thin-film transistors based on multilayer MoS2 crystals. Nat Commun, 2012, 3:1011 doi: 10.1038/ncomms2018
[7]
Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotech, 2013, 8(7):497 doi: 10.1038/nnano.2013.100
[8]
Choi W, Cho M Y, Konar A, et al. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv Mater, 2012, 24(43):5832 doi: 10.1002/adma.201201909
[9]
Yu S H, Lee Y, Jang S K, et al. Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse. ACS Nano, 2014, 8(8):8285 doi: 10.1021/nn502715h
[10]
Pak J, Jang J, Cho K, et al. Enhancement of photodetection characteristics of MoS2 field effect transistors using surface treatment with copper phthalocyanine. Nanoscale, 2015, 7(44):18780 doi: 10.1039/C5NR04836B
[11]
Kufer D, Nikitskiy I, Lasanta T, et al. Hybrid 2D-0D MoS2-PbS quantum dot photodetectors. Adv Mater, 2015, 27(1):176 doi: 10.1002/adma.v27.1
[12]
Kazim S, Nazeeruddin M K, Gratzel M, et al. Perovskite as light harvester:a game changer in photovoltaics. Angew Chem Int Edit, 2014, 53(11):2812 doi: 10.1002/anie.v53.11
[13]
Kim H S, Lee C R, Im J H, et al. Lead Iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep, 2012, 2:7 https://www.researchgate.net/profile/Jacques-E_Moser/publication/230716542_Lead_Iodide_Perovskite_Sensitized_All-Solid-State_Submicron_Thin_Film_Mesoscopic_Solar_Cell_with_Efficiency_Exceeding_9/links/09e41506f09cb81b07000000.pdf?origin=publication_detail
[14]
Yang W S, Noh J H, Jeon N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348(6240):1234 doi: 10.1126/science.aaa9272
[15]
Lee Y, Kwon J, Hwang E, et al. High-performance perovskitegraphene hybrid photodetector. Adv Mater, 2015, 27(1):41 doi: 10.1002/adma.v27.1
[16]
Kwak D H, Lim D H, Ra H S, et al. High performance hybrid graphene-CsPbBr3-xIx perovskite nanocrystal photodetector. RSC Adv, 2016, 6(69):65252 doi: 10.1039/C6RA08699C
[17]
Ma C, Shi Y M, Hu W J, et al. Heterostructured WS2/CH3NH3PbI3 photoconductors with suppressed dark current and enhanced photodetectivity. Adv Mater, 2016, 28(19):3683 doi: 10.1002/adma.v28.19
[18]
Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotech, 2011, 6(3):147 doi: 10.1038/nnano.2010.279
[19]
Shkrob I A, Marin T W. Charge trapping in photovoltaically active perovskites and related halogenoplumbate compounds. J Phys Chem Lett, 2014, 5(7):1066 doi: 10.1021/jz5004022
[20]
Kim J, Lee S H, Lee J H, et al. The role of intrinsic defects in methylammonium lead iodide perovskite. J Phys Chem Lett, 2014, 5(8):1312 doi: 10.1021/jz500370k
[21]
Dong R, Fang Y, Chae J, et al. High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites. Adv Mater, 2015, 27(11):1912 doi: 10.1002/adma.v27.11
[22]
Zhang H, Cheng J Q, Lin F, et al. Pinhole-free and surfacenanostructured niox film by room-temperature solution process for high-performance flexible perovskite solar cells with good stability and reproducibility. ACS Nano, 2016, 10(1):1503 doi: 10.1021/acsnano.5b07043
1

Recent progress on stability and applications of flexible perovskite photodetectors

Ying Hu, Qianpeng Zhang, Junchao Han, Xinxin Lian, Hualiang Lv, et al.

Journal of Semiconductors, 2025, 46(1): 011601. doi: 10.1088/1674-4926/24080019

2

Advances in flexible weak-light detectors based on perovskites: preparation, optimization, and application

Yaqian Yang, Ying Li, Di Chen, Guozhen Shen

Journal of Semiconductors, 2025, 46(1): 011608. doi: 10.1088/1674-4926/24090046

3

Multi-functional PbI2 enables self-driven perovskite nanowire photodetector with ultra-weak light detection ability

Yapeng Tang, Bo’ao Xiao, Dingjun Wu, Hai Zhou

Journal of Semiconductors, 2025, 46(5): 052801. doi: 10.1088/1674-4926/24110016

4

Multiframe-integrated, in-sensor computing using persistent photoconductivity

Xiaoyong Jiang, Minrui Ye, Yunhai Li, Xiao Fu, Tangxin Li, et al.

Journal of Semiconductors, 2024, 45(9): 092401. doi: 10.1088/1674-4926/24040002

5

Photodetector based on Ruddlesden-Popper perovskite microwires with broader band detection

Yongxu Yan, Zhexin Li, Zheng Lou

Journal of Semiconductors, 2023, 44(8): 082201. doi: 10.1088/1674-4926/44/8/082201

6

Multilayered PdTe2/thin Si heterostructures as self-powered flexible photodetectors with heart rate monitoring ability

Chengyun Dong, Xiang An, Zhicheng Wu, Zhiguo Zhu, Chao Xie, et al.

Journal of Semiconductors, 2023, 44(11): 112001. doi: 10.1088/1674-4926/44/11/112001

7

Surface plasmon assisted high-performance photodetectors based on hybrid TiO2@GaOxNy-Ag heterostructure

Jiajia Tao, Guang Zeng, Xiaoxi Li, Yang Gu, Wenjun Liu, et al.

Journal of Semiconductors, 2023, 44(7): 072806. doi: 10.1088/1674-4926/44/7/072806

8

Van der Waals heterojunction ReSe2/WSe2 polarization-resolved photodetector

Xiaoyu Tian, Yushen Liu

Journal of Semiconductors, 2021, 42(3): 032001. doi: 10.1088/1674-4926/42/3/032001

9

Improved efficiency and photo-stability of methylamine-free perovskite solar cells via cadmium doping

Yong Chen, Yang Zhao, Qiufeng Ye, Zema Chu, Zhigang Yin, et al.

Journal of Semiconductors, 2019, 40(12): 122201. doi: 10.1088/1674-4926/40/12/122201

10

Flexible ultraviolet photodetectors based on ZnO–SnO2 heterojunction nanowire arrays

Zheng Lou, Xiaoli Yang, Haoran Chen, Zhongzhu Liang

Journal of Semiconductors, 2018, 39(2): 024002. doi: 10.1088/1674-4926/39/2/024002

11

Large area perovskite solar cell module

Longhua Cai, Lusheng Liang, Jifeng Wu, Bin Ding, Lili Gao, et al.

Journal of Semiconductors, 2017, 38(1): 014006. doi: 10.1088/1674-4926/38/1/014006

12

Strain effect on intersubband transitions in rolled-up quantum well infrared photodetectors

Han Wang, Shilong Li, Honglou Zhen, Xiaofei Nie, Gaoshan Huang, et al.

Journal of Semiconductors, 2017, 38(5): 054006. doi: 10.1088/1674-4926/38/5/054006

13

Photodetectors based on two dimensional materials

Zheng Lou, Zhongzhu Liang, Guozhen Shen

Journal of Semiconductors, 2016, 37(9): 091001. doi: 10.1088/1674-4926/37/9/091001

14

A novel PIN photodetector with double linear arrays for rainfall prediction

Yan Yao, Xiong Liu, Li Yuan, Zhaohua Zhang, Tianling Ren, et al.

Journal of Semiconductors, 2015, 36(9): 094011. doi: 10.1088/1674-4926/36/9/094011

15

N+P photodetector characterization using the quasi-steady state photoconductance decay method

Omeime Xerviar Esebamen

Journal of Semiconductors, 2012, 33(12): 123002. doi: 10.1088/1674-4926/33/12/123002

16

A monolithic, standard CMOS, fully differential optical receiver with an integrated MSM photodetector

Yu Changliang, Mao Luhong, Xiao Xindong, Xie Sheng, Zhang Shilin, et al.

Journal of Semiconductors, 2009, 30(10): 105010. doi: 10.1088/1674-4926/30/10/105010

17

A Monolithic Integrated Long-Wavelength Tunable Photodetector Based on a Low Temperature Buffer Layer

Lü Jihe, Huang Hui, Ren Xiaomin, Miao Ang, Li Yiqun, et al.

Chinese Journal of Semiconductors , 2007, 28(11): 1807-1810.

18

Study of Uni-Traveling-Carrier Photodetectors

Zhu Haobo, Mao Luhong, 杨展, Yang Zhan, 张世林, et al.

Chinese Journal of Semiconductors , 2006, 27(11): 2019-2024.

19

Fabrication of 1.55μm Si-Based Resonant Cavity Enhanced Photodetectors

Mao Rongwei, Zuo Yuhua, Li Chuanbo, Cheng Buwen, Teng Xuegong, et al.

Chinese Journal of Semiconductors , 2005, 26(2): 271-275.

20

A GaAs-Based MOEMS Tunable RCE Photodetector with Single Cantilever Beam

Chinese Journal of Semiconductors , 2005, 26(6): 1087-1093.

  • Search

    Advanced Search >>

    GET CITATION

    韩培德, 段晓峰, 孙家龙, 张泽, 王占国. 在蓝宝石衬底两个相反c面同时生长氮化镓薄膜的差异[J]. 半导体学报(英文版), 2001, 22(8): 1030-1034.
    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4914 Times PDF downloads: 46 Times Cited by: 0 Times

    History

    Received: 07 November 2016 Revised: 30 November 2016 Online: Published: 01 March 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Fengjing Liu, Jiawei Wang, Liang Wang, Xiaoyong Cai, Chao Jiang, Gongtang Wang. Enhancement of photodetection based on perovskite/MoS2 hybrid thin film transistor[J]. Journal of Semiconductors, 2017, 38(3): 034002. doi: 10.1088/1674-4926/38/3/034002 ****F J Liu, J W Wang, L Wang, X Y Cai, C Jiang, G T Wang. Enhancement of photodetection based on perovskite/MoS2 hybrid thin film transistor[J]. J. Semicond., 2017, 38(3): 034002. doi: 10.1088/1674-4926/38/3/034002.
      Citation:
      Fengjing Liu, Jiawei Wang, Liang Wang, Xiaoyong Cai, Chao Jiang, Gongtang Wang. Enhancement of photodetection based on perovskite/MoS2 hybrid thin film transistor[J]. Journal of Semiconductors, 2017, 38(3): 034002. doi: 10.1088/1674-4926/38/3/034002 ****
      F J Liu, J W Wang, L Wang, X Y Cai, C Jiang, G T Wang. Enhancement of photodetection based on perovskite/MoS2 hybrid thin film transistor[J]. J. Semicond., 2017, 38(3): 034002. doi: 10.1088/1674-4926/38/3/034002.

      Enhancement of photodetection based on perovskite/MoS2 hybrid thin film transistor

      DOI: 10.1088/1674-4926/38/3/034002
      Funds:

      Project supported by the National Natural Science Foundation of China (Nos.11374070,61327009 214320051) and the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDA09040201)

      the Strategic Priority Research Program of the Chinese Academy of Sciences No.XDA09040201

      Project supported by the National Natural Science Foundation of China Nos.11374070,61327009 214320051

      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return