Processing math: 100%
J. Semicond. > 2014, Volume 35 > Issue 11 > 115003

SEMICONDUCTOR INTEGRATED CIRCUITS

A high power active circulator using GaN MMIC power amplifiers

Liming Gu1, Wenquan Che1, , Fan-Hsiu Huang2 and Hsien-Chin Chiu2

+ Author Affiliations

 Corresponding author: Che Wenquan, Email:xie.liangbo@hotmail.com

DOI: 10.1088/1674-4926/35/11/115003

PDF

Abstract: This paper presents a 2.4 GHz hybrid integrated active circulator consisting of three power amplifiers and three PCB-based Wilkinson power dividers. The power amplifiers were designed and fabricated in a standard 0.35-μm AlGaN/GaN HEMT technology, and combined with three traditional power dividers on FR4 using bonding wires. Due to the isolation of power dividers, the isolation between three ports is achieved; meanwhile, due to the unidirectional characteristics of the power amplifiers, the nonreciprocal transfer characteristic of the circulator is realized. The measured insertion gain of the proposed active circulator is about 2-2.7 dB at the center frequency of 2.4 GHz, the isolation between three ports is better than 20 dB over 1.2-3.4 GHz, and the output power of the designed active circulator achieves up to 20.1-21.2 dBm at the center frequency.

Key words: hybridgallium nitride (GaN)monolithic microwave integrated circuit (MMIC)active circulatorpower amplifierpower divider



[1]
Palomba M, Bentini A, Palombini D, et al. A novel hybrid active quasi-circulator for L-band applications. International Conference on Microwave, Radar and Wireless Communication, Warsaw, Poland, 2012:41 http://ieeexplore.ieee.org/document/6233533/
[2]
Lax B, Button K J. Microwave ferrites and ferromagnetic. McGraw-Hill, 1962 http://ci.nii.ac.jp/ncid/BA1136165X
[3]
Tanaka S, Shimomura N, Ohtake K. Active circulators-the realization of circulators using transistors. Proc IEEE, 1965, 53:260 doi: 10.1109/PROC.1965.3683
[4]
Ayasli Y. Field effect transistor circulators. IEEE Trans Magn, 1989, 25(5):3242 doi: 10.1109/20.42266
[5]
Berg M, Hackbarth T, Maile B E, et al. Active circulator MMIC in CPW technology using quarter micron InAlAs/InGaAs/InP HEFTs. Proc 8th Int Indium Phosphide Rel Mater Conf, 1996:68 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=491936
[6]
Cryan M J, Hall P S. An integrated active circulator antenna. IEEE Microw Guided Wave Lett, 1997, 7(7):190 doi: 10.1109/75.594860
[7]
Shin S C, Huang J Y, Lin K Y, et al. A 1.5-9.6 GHz monolithic active quasi-circulator in 0.18μm CMOS technology. IEEE Microw Wireless Compon Lett, 2008, 18(12):797 doi: 10.1109/LMWC.2008.2007703
[8]
Cheung S, Halloran T, Weedon W, et al. Active quasi circulators using quadrature hybrids for simultaneous transmit and receive. IEEE MTT-S Int Microw Symp Dig, 2009:381 http://ieeexplore.ieee.org/document/5165713/
[9]
Wu H S, Wang C W, Tzuang C K C. CMOS active quasi-circulator with dual transmission gains incorporating feedforward technique at K-band. IEEE Trans Microw Theory Tech, 2010, 58(8):2084 doi: 10.1109/TMTT.2010.2052405
[10]
Chang C H, Lo Y T, Kiang J F. A 30 GHz active quasi-circulator with current-reuse technique in 0.18μm CMOS technology. IEEE Microw Wireless Compon Lett, 2010, 20(12):693 doi: 10.1109/LMWC.2010.2079321
[11]
Huang D, Kuo J, Wang H. A 24-GHz low power and high isolation active quasi-circulator. IEEE MTT-S International Microwave Symposium Digest, 2012:1 http://ieeexplore.ieee.org/document/6258379/
[12]
Kawai T, Toyoda S. 20 GHz band active circulator utilizing fin-line. International Conference on Infrared, Millimeter, and Terahertz Waves, 2012:1 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6380409
[13]
Liu B, Feng Z. An extrinsic fmax > 100 GHz InAlN/GaN HEMT with AlGaN back barrier. Journal of Semiconductors, 2013, 34(4):044006 doi: 10.1088/1674-4926/34/4/044006
[14]
Pozar D M. Microwave engineering. 3rd ed. New York:Wiley, 2005
[15]
Gu L, Feng W, Che W, et al. Investigations on bonding wire array for interconnect of RFICs. International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2012:1 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6230406
Fig. 1.  Configuration of the proposed active circulator.

Fig. 2.  Traditional Wilkinson power divider.

Fig. 3.  The simulation performances of the designed power divider.

Fig. 4.  The schematic of the designed GaN MMIC power amplifier.

Fig. 5.  The micrograph of the designed GaN MMIC power amplifier (1.34 × 0.49 mm2).

Fig. 6.  Small-signal performances of the GaN MMIC power amplifier.

Fig. 7.  The output of the designed GaN MMIC power amplifier. (VDD = 7 V, f = 2.4 GHz).

Fig. 8.  Photograph of the designed active circulator.

Fig. 9.  Measured S parameters of the designed hybrid active circulator. (a) Insertion gain and return loss. (b) Isolation.

Fig. 10.  Measured output power performances of the active circulator. (VDD = 7 V, f = 2.4 GHz).

Table 1.   Performance comparison of active circulators.

[1]
Palomba M, Bentini A, Palombini D, et al. A novel hybrid active quasi-circulator for L-band applications. International Conference on Microwave, Radar and Wireless Communication, Warsaw, Poland, 2012:41 http://ieeexplore.ieee.org/document/6233533/
[2]
Lax B, Button K J. Microwave ferrites and ferromagnetic. McGraw-Hill, 1962 http://ci.nii.ac.jp/ncid/BA1136165X
[3]
Tanaka S, Shimomura N, Ohtake K. Active circulators-the realization of circulators using transistors. Proc IEEE, 1965, 53:260 doi: 10.1109/PROC.1965.3683
[4]
Ayasli Y. Field effect transistor circulators. IEEE Trans Magn, 1989, 25(5):3242 doi: 10.1109/20.42266
[5]
Berg M, Hackbarth T, Maile B E, et al. Active circulator MMIC in CPW technology using quarter micron InAlAs/InGaAs/InP HEFTs. Proc 8th Int Indium Phosphide Rel Mater Conf, 1996:68 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=491936
[6]
Cryan M J, Hall P S. An integrated active circulator antenna. IEEE Microw Guided Wave Lett, 1997, 7(7):190 doi: 10.1109/75.594860
[7]
Shin S C, Huang J Y, Lin K Y, et al. A 1.5-9.6 GHz monolithic active quasi-circulator in 0.18μm CMOS technology. IEEE Microw Wireless Compon Lett, 2008, 18(12):797 doi: 10.1109/LMWC.2008.2007703
[8]
Cheung S, Halloran T, Weedon W, et al. Active quasi circulators using quadrature hybrids for simultaneous transmit and receive. IEEE MTT-S Int Microw Symp Dig, 2009:381 http://ieeexplore.ieee.org/document/5165713/
[9]
Wu H S, Wang C W, Tzuang C K C. CMOS active quasi-circulator with dual transmission gains incorporating feedforward technique at K-band. IEEE Trans Microw Theory Tech, 2010, 58(8):2084 doi: 10.1109/TMTT.2010.2052405
[10]
Chang C H, Lo Y T, Kiang J F. A 30 GHz active quasi-circulator with current-reuse technique in 0.18μm CMOS technology. IEEE Microw Wireless Compon Lett, 2010, 20(12):693 doi: 10.1109/LMWC.2010.2079321
[11]
Huang D, Kuo J, Wang H. A 24-GHz low power and high isolation active quasi-circulator. IEEE MTT-S International Microwave Symposium Digest, 2012:1 http://ieeexplore.ieee.org/document/6258379/
[12]
Kawai T, Toyoda S. 20 GHz band active circulator utilizing fin-line. International Conference on Infrared, Millimeter, and Terahertz Waves, 2012:1 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6380409
[13]
Liu B, Feng Z. An extrinsic fmax > 100 GHz InAlN/GaN HEMT with AlGaN back barrier. Journal of Semiconductors, 2013, 34(4):044006 doi: 10.1088/1674-4926/34/4/044006
[14]
Pozar D M. Microwave engineering. 3rd ed. New York:Wiley, 2005
[15]
Gu L, Feng W, Che W, et al. Investigations on bonding wire array for interconnect of RFICs. International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2012:1 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6230406
1

Numerical simulation of UV LEDs with GaN and BGaN single quantum well

Asma Belaid, Abdelkader Hamdoune

Journal of Semiconductors, 2019, 40(3): 032802. doi: 10.1088/1674-4926/40/3/032802

2

Deep-ultraviolet integrated photonic and optoelectronic devices: A prospect of the hybridization of group III–nitrides, III–oxides, and two-dimensional materials

Nasir Alfaraj, Jung-Wook Min, Chun Hong Kang, Abdullah A. Alatawi, Davide Priante, et al.

Journal of Semiconductors, 2019, 40(12): 121801. doi: 10.1088/1674-4926/40/12/121801

3

Design of a 3D Wilkinson power divider using through glass via technology

Jifei Sang, Libo Qian, Yinshui Xia, Huakang Xia

Journal of Semiconductors, 2018, 39(12): 125007. doi: 10.1088/1674-4926/39/12/125007

4

Novel design techniques for noise-tolerant power-gated CMOS circuits

Rumi Rastogi, Sujata Pandey

Journal of Semiconductors, 2017, 38(1): 015001. doi: 10.1088/1674-4926/38/1/015001

5

A highly linear power amplifier for WLAN

Jie Jin, Jia Shi, Baoli Ai, Xuguang Zhang

Journal of Semiconductors, 2016, 37(2): 025006. doi: 10.1088/1674-4926/37/2/025006

6

An integrated power divider implemented in GaAs technology

Zebao Du, Hao Yang, Haiying Zhang, Min Zhu

Journal of Semiconductors, 2014, 35(4): 045003. doi: 10.1088/1674-4926/35/4/045003

7

A flat gain GaN MMIC power amplifier for X band application

Qin Ge, Xinyu Liu, Yingkui Zheng, Chuan Ye

Journal of Semiconductors, 2014, 35(12): 125004. doi: 10.1088/1674-4926/35/12/125004

8

A novel high performance ESD power clamp circuit with a small area

Yang Zhaonian, Liu Hongxia, Li Li, Zhuo Qingqing

Journal of Semiconductors, 2012, 33(9): 095006. doi: 10.1088/1674-4926/33/9/095006

9

A 0.18 μm CMOS dual-band low power low noise amplifier for a global navigation satellite system

Li Bing, Zhuang Yiqi, Li Zhenrong, Jin Gang

Journal of Semiconductors, 2010, 31(12): 125001. doi: 10.1088/1674-4926/31/12/125001

10

A 2.4 GHz power amplifier in 0.35 μm SiGe BiCMOS

Hao Mingli, Shi Yin

Journal of Semiconductors, 2010, 31(1): 015004. doi: 10.1088/1674-4926/31/1/015004

11

A 2.5-Gb/s fully-integrated, low-power clock and recovery circuit in 0.18-μm CMOS

Zhang Changchun, Wang Zhigong, Shi Si, Guo Yufeng

Journal of Semiconductors, 2010, 31(3): 035007. doi: 10.1088/1674-4926/31/3/035007

12

An X-band four-way combined GaN solid-state power amplifier

Chen Chi, Hao Yue, Feng Hui, Gu Wenping, Li Zhiming, et al.

Journal of Semiconductors, 2010, 31(1): 015003. doi: 10.1088/1674-4926/31/1/015003

13

High linearity 5.2-GHz power amplifier MMIC using CPW structure technology with a linearizer circuit

Wu Chia-Song, Lin Tah-Yeong, Wu Hsien-Ming

Journal of Semiconductors, 2010, 31(2): 025002. doi: 10.1088/1674-4926/31/2/025002

14

5.2 GHz variable-gain amplifier and power amplifier driver for WLAN IEEE 802.11a transmitter front-end

Zhang Xuelian, Yan Jun, Shi Yin, Dai Fa Foster

Journal of Semiconductors, 2009, 30(1): 015008. doi: 10.1088/1674-4926/30/1/015008

15

An X-band GaN combined solid-state power amplifier

Chen Chi, Hao Yue, Feng Hui, Yang Linan, Ma Xiaohua, et al.

Journal of Semiconductors, 2009, 30(9): 095001. doi: 10.1088/1674-4926/30/9/095001

16

A 2.4-GHz SiGe HBT power amplifier with bias current controlling circuit

Peng Yanjun, Song Jiayou, Wang Zhigong, Tsang K F

Journal of Semiconductors, 2009, 30(5): 055008. doi: 10.1088/1674-4926/30/5/055008

17

A Fully-Integrated Dual Band CMOS Power Amplifier Based on an Active Matching Transformer

Jin Boshi, Wu Qun, Yang Guohui, Meng Fanyi, Fu Jiahui, et al.

Journal of Semiconductors, 2008, 29(11): 2204-2208.

18

A High Performance Sub-100nm Nitride/Oxynitride Stack Gate Dielectric CMOS Device with Refractory W/TiN Metal Gates

Zhong Xinghua, Zhou Huajie, Lin Gang, Xu Qiuxia

Chinese Journal of Semiconductors , 2006, 27(3): 448-453.

19

Equivalent Circuit Analysis of an RF Integrated Inductor with Ferrite Thin-Film

Ren Tianling, Yang Chen, Liu Feng, Liu Litian, Wang A Z, et al.

Chinese Journal of Semiconductors , 2006, 27(3): 511-515.

20

Simulation of a Monolithic Integrated CMOS Preamplifier for Neural Recordings

Sui Xiaohong, Liu Jinbin, Gu Ming, Pei Weihua, Chen Hongda, et al.

Chinese Journal of Semiconductors , 2005, 26(12): 2275-2280.

  • Search

    Advanced Search >>

    GET CITATION

    Liming Gu, Wenquan Che, Fan-Hsiu Huang, Hsien-Chin Chiu. A high power active circulator using GaN MMIC power amplifiers[J]. Journal of Semiconductors, 2014, 35(11): 115003. doi: 10.1088/1674-4926/35/11/115003
    L M Gu, W Q Che, F H Huang, H C Chiu. A high power active circulator using GaN MMIC power amplifiers[J]. J. Semicond., 2014, 35(11): 115003. doi:  10.1088/1674-4926/35/11/115003.
    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3483 Times PDF downloads: 57 Times Cited by: 0 Times

    History

    Received: 09 April 2014 Revised: 23 May 2014 Online: Published: 01 November 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Liming Gu, Wenquan Che, Fan-Hsiu Huang, Hsien-Chin Chiu. A high power active circulator using GaN MMIC power amplifiers[J]. Journal of Semiconductors, 2014, 35(11): 115003. doi: 10.1088/1674-4926/35/11/115003 ****L M Gu, W Q Che, F H Huang, H C Chiu. A high power active circulator using GaN MMIC power amplifiers[J]. J. Semicond., 2014, 35(11): 115003. doi:  10.1088/1674-4926/35/11/115003.
      Citation:
      Liming Gu, Wenquan Che, Fan-Hsiu Huang, Hsien-Chin Chiu. A high power active circulator using GaN MMIC power amplifiers[J]. Journal of Semiconductors, 2014, 35(11): 115003. doi: 10.1088/1674-4926/35/11/115003 ****
      L M Gu, W Q Che, F H Huang, H C Chiu. A high power active circulator using GaN MMIC power amplifiers[J]. J. Semicond., 2014, 35(11): 115003. doi:  10.1088/1674-4926/35/11/115003.

      A high power active circulator using GaN MMIC power amplifiers

      DOI: 10.1088/1674-4926/35/11/115003
      Funds:

      Project supported by the National Science Foundation for Distinguished Young Scholars of China (No. 61225001)

      the National Science Foundation for Distinguished Young Scholars of China 61225001

      More Information
      • Corresponding author: Che Wenquan, Email:xie.liangbo@hotmail.com
      • Received Date: 2014-04-09
      • Revised Date: 2014-05-23
      • Published Date: 2014-11-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return