Most Read
Most read articles in recent seven days
A wide-bandgap copolymer donor with a 5-methyl-4H-dithieno[3,2-e:2',3'-g]isoindole-4,6(5H)-dione unit 361
Anxin Sun, Jingui Xu, Guanhua Zong, Zuo Xiao, Yong Hua, Bin Zhang, Liming Ding
2021, 42(10): 100502. doi: 10.1088/1674-4926/42/10/100502

ULSI硅衬底的化学机械抛光 167
2004, 25(1): 115-119.
Abstract PDF

Multiple SiGe/Si layers epitaxy and SiGe selective etching for vertically stacked DRAM 162
Zhenzhen Kong, Hongxiao Lin, Hailing Wang, Yanpeng Song, Junjie Li, Xiaomeng Liu, Anyan Du, Yuanhao Miao, Yiwen Zhang, Yuhui Ren, Chen Li, Jiahan Yu, Jinbiao Liu, Jingxiong Liu, Qinzhu Zhang, Jianfeng Gao, Huihui Li, Xiangsheng Wang, Junfeng Li, Henry H. Radamson, Chao Zhao, Tianchun Ye, Guilei Wang
2023, 44(12): 124101. doi: 10.1088/1674-4926/44/12/124101

Fifteen periods of Si/Si0.7Ge0.3 multilayers (MLs) with various SiGe thicknesses are grown on a 200 mm Si substrate using reduced pressure chemical vapor deposition (RPCVD). Several methods were utilized to characterize and analyze the ML structures. The high resolution transmission electron microscopy (HRTEM) results show that the ML structure with 20 nm Si0.7Ge0.3 features the best crystal quality and no defects are observed. Stacked Si0.7Ge0.3 ML structures etched by three different methods were carried out and compared, and the results show that they have different selectivities and morphologies. In this work, the fabrication process influences on Si/SiGe MLs are studied and there are no significant effects on the Si layers, which are the channels in lateral gate all around field effect transistor (L-GAAFET) devices. For vertically-stacked dynamic random access memory (VS-DRAM), it is necessary to consider the dislocation caused by strain accumulation and stress release after the number of stacked layers exceeds the critical thickness. These results pave the way for the manufacture of high-performance multivertical-stacked Si nanowires, nanosheet L-GAAFETs, and DRAM devices.

A review on SRAM-based computing in-memory: Circuits, functions, and applications 151
Zhiting Lin, Zhongzhen Tong, Jin Zhang, Fangming Wang, Tian Xu, Yue Zhao, Xiulong Wu, Chunyu Peng, Wenjuan Lu, Qiang Zhao, Junning Chen
2022, 43(3): 031401. doi: 10.1088/1674-4926/43/3/031401

Artificial intelligence (AI) processes data-centric applications with minimal effort. However, it poses new challenges to system design in terms of computational speed and energy efficiency. The traditional von Neumann architecture cannot meet the requirements of heavily data-centric applications due to the separation of computation and storage. The emergence of computing in-memory (CIM) is significant in circumventing the von Neumann bottleneck. A commercialized memory architecture, static random-access memory (SRAM), is fast and robust, consumes less power, and is compatible with state-of-the-art technology. This study investigates the research progress of SRAM-based CIM technology in three levels: circuit, function, and application. It also outlines the problems, challenges, and prospects of SRAM-based CIM macros.

8-inch free-standing GaN substrates grown by hydride vapor phase epitaxy 147
Ruihua Zhang, Fang Liu, Yao Wu, Hongfen Xu, Jinmi He, Ming Liu, Jianhui Wang, Kunyang Li, Ping Wang, Jiejun Wu, Tongjun Yu, Qi Wang, Jingquan Lu, Guoyi Zhang, Xinqiang Wang
doi: 10.1088/1674-4926/25100017

The absence of large-size gallium nitride (GaN) substrates with low dislocation density remains a primary bottleneck for advancing GaN-based devices. Here, we demonstrate the achievement of 8-inch freestanding GaN substrates grown by hydride vapor phase epitaxy. Critical to this achievement is the improvement in gas-flow uniformity, which ensures exceptional thickness homogeneity and enables the crack-free growth of GaN. After laser lift-off (LLO) separation, the freestanding GaN substrate exhibits superior crystal quality, evidenced by full width at half maximum values of 68 and 54 arcsec for X-ray diffraction rocking curves of (002) and (102) planes, alongside a low dislocation density of 1.6 × 106 cm−2. This approach establishes a robust pathway for the production of large-size GaN substrates, which are essential for advancing next-generation power electronics and high-efficiency photonics.

Characteristics of gallium oxide nMOSFET inverter 142
Yixin Zhang, Haifeng Chen, Zijie Ding, Yuduo Zhang, Qin Lu, Xiangtai Liu, Yunhe Guan
doi: 10.1088/1674-4926/25040011

β-Ga2O3 MOS inverter should play a crucial role in β-Ga2O3 electronic circuits. Enhancement-mode (E-mode) MOSFET was fabricated based on β-Ga2O3 film grown by atomic layer deposition technology, and the β-Ga2O3 inverter was further monolithically integrated on this basis. The β-Ga2O3 nMOSFET exhibits excellent electrical characteristics with an on/off current ratio reaching 105. The logic inverter shows outstanding voltage inversion characteristics under low-frequency from 1 to 400 Hz operation. As the frequency continues to increase to 10 K, the reverse characteristic becomes worse due to parasitic capacitance induced by processes, and the difference between the highest and lowest values of VOUT has an exponential decay relationship with the frequency. This paper provides the practice for the development of β-Ga2O3-based circuits.

Dithieno[3',2':3,4;2'',3'':5,6]benzo[1,2-c][1,2,5]oxadiazole-based polymer donors with deep HOMO levels 119
Xiongfeng Li, Jingui Xu, Zuo Xiao, Xingzhu Wang, Bin Zhang, Liming Ding
2021, 42(6): 060501. doi: 10.1088/1674-4926/42/6/060501

Model of NBTI combined with mobility degradation 118
Xuezhong Wu, Chenyue Ma, Shucheng Gao, Xiangbin Li, Fu Sun, Lining Zhang, Xinnan Lin
2018, 39(12): 124015. doi: 10.1088/1674-4926/39/12/124015

The mobility degradation induced by negative bias temperature instability (NBTI) is usually ignored in traditional NBTI modeling and simulation, resulting in overestimation of the circuit lifetime, especially after long-term operation. In this paper, the mobility degradation is modeled in combination with the universal NBTI model. The coulomb scattering induced by interface states is revealed to be the dominant component responsible for mobility degradation. The proposed mobility degradation model fits the measured data well and provides an accurate solution for evaluating coupling of NBTI with HCI (hot carrier injection) and SHE (self-heating effect), which indicates that mobility degradation should be considered in long-term circuit aging simulation.

Robotic computing system and embodied AI evolution: an algorithm-hardware co-design perspective 109
Longke Yan, Xin Zhao, Bohan Yang, Yongkun Wu, Guangnan Dai, Jiancong Li, Chi-Ying Tsui, Kwang-Ting Cheng, Yihan Zhang, Fengbin Tu
2025, 46(10): 101201. doi: 10.1088/1674-4926/25020034

Robotic computing systems play an important role in enabling intelligent robotic tasks through intelligent algorithms and supporting hardware. In recent years, the evolution of robotic algorithms indicates a roadmap from traditional robotics to hierarchical and end-to-end models. This algorithmic advancement poses a critical challenge in achieving balanced system-wide performance. Therefore, algorithm-hardware co-design has emerged as the primary methodology, which analyzes algorithm behaviors on hardware to identify common computational properties. These properties can motivate algorithm optimization to reduce computational complexity and hardware innovation from architecture to circuit for high performance and high energy efficiency. We then reviewed recent works on robotic and embodied AI algorithms and computing hardware to demonstrate this algorithm-hardware co-design methodology. In the end, we discuss future research opportunities by answering two questions: (1) how to adapt the computing platforms to the rapid evolution of embodied AI algorithms, and (2) how to transform the potential of emerging hardware innovations into end-to-end inference improvements.

A review of silicon-based wafer bonding processes, an approach to realize the monolithic integration of Si-CMOS and III–V-on-Si wafers 99
Shuyu Bao, Yue Wang, Khaw Lina, Li Zhang, Bing Wang, Wardhana Aji Sasangka, Kenneth Eng Kian Lee, Soo Jin Chua, Jurgen Michel, Eugene Fitzgerald, Chuan Seng Tan, Kwang Hong Lee
2021, 42(2): 023106. doi: 10.1088/1674-4926/42/2/023106

The heterogeneous integration of III–V devices with Si-CMOS on a common Si platform has shown great promise in the new generations of electrical and optical systems for novel applications, such as HEMT or LED with integrated control circuitry. For heterogeneous integration, direct wafer bonding (DWB) techniques can overcome the materials and thermal mismatch issues by directly bonding dissimilar materials systems and device structures together. In addition, DWB can perform at wafer-level, which eases the requirements for integration alignment and increases the scalability for volume production. In this paper, a brief review of the different bonding technologies is discussed. After that, three main DWB techniques of single-, double- and multi-bonding are presented with the demonstrations of various heterogeneous integration applications. Meanwhile, the integration challenges, such as micro-defects, surface roughness and bonding yield are discussed in detail.